首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Declines of habitat‐forming organisms in terrestrial and marine systems can lead to changes in community‐wide biodiversity. The dominant habitat‐forming macroalga Phyllospora comosa (Fucales) went locally extinct along the metropolitan coastline of Sydney in the 1980s. However, the consequences of that disappearance to the associated faunal diversity in these habitats, and whether Phyllospora is ecologically redundant with respect to the biodiversity it supports, are not known. Efforts are underway to restore Phyllospora, and the capacity to enhance local biodiversity is an important component of the rationale for restoration. We compared epifaunal diversity (abundances and composition) between Phyllospora and two other co‐occurring habitat‐forming algae, the kelp Ecklonia radiata and the fucoid Sargassum vestitum, and determined whether Phyllospora transplanted to Sydney developed different epifaunal communities than undisturbed thalli and controls. Where the 3 species naturally co‐occurred, Phyllospora supported different abundances of taxa than Ecklonia and Sargassum, as well as different composition at finer scales, which suggests that this species is not completely redundant and that its disappearance may have affected local biodiversity. Similarly, assemblages on transplanted Phyllospora differed from those on Ecklonia and Sargassum at restored sites, but did not always resemble assemblages from extant natural Phyllospora populations, even 18 months after transplantation. These experiments indicate that restoration of key habitat‐forming seaweeds not only recovers the algal species but also reduces risks of losing habitat diversity for epifauna and their consumers. However, restoration of all the original biodiversity associated with these seaweeds can be a difficult, complex, and long‐term process.  相似文献   

2.
There is an urgent need for a new conservation approach as mere designation of protected areas, the primary approach to conserving biodiversity, revealed its low conservation efficiency and inability to cope with numerous challenges faced by nature in the Anthropocene. The paper discusses the new concept, which proposes that ecological restoration becomes an integral part of conservation planning and implementation, and is done using threatened plant species that are introduced not only into locations where they currently grow or grew in the recent past, but also into suitable locations within their potential distribution range. This new concept is called conservation-oriented restoration to distinguish it from the traditional restoration. Although the number of restoration projects focusing on recreation of once existing natural habitats is instantly growing, the majority of ecological restoration projects, in contrast to conservation-oriented restoration, have predominantly utilitarian goals, e.g.improvement or air quality, erosion control or soil replenishment. Conservation-oriented restoration should not be seen as an alternative either to the latter, or to the conservation dealing with particular threatened species(species-targeted conservation). These three conservation approaches, traditional ecological restoration, species-targeted conservation, and conservation-oriented restoration differ not only in broadly defined goals and attributes of their targets, but also in the types of ecosystems they are applicable to, and complement each other in combating global deterioration of the environment and biodiversity loss.  相似文献   

3.
There is an urgent need for a new conservation approach as mere designation of protected areas, the primary approach to conserving biodiversity, revealed its low conservation efficiency and inability to cope with numerous challenges faced by nature in the Anthropocene. The paper discusses the new concept, which proposes that ecological restoration becomes an integral part of conservation planning and implementation, and is done using threatened plant species that are introduced not only into locations where they currently grow or grew in the recent past, but also into suitable locations within their potential distribution range. This new concept is called conservation-oriented restoration to distinguish it from the traditional restoration. Although the number of restoration projects focusing on recreation of once existing natural habitats is instantly growing, the majority of ecological restoration projects, in contrast to conservation-oriented restoration, have predominantly utilitarian goals, e.g.improvement or air quality, erosion control or soil replenishment. Conservation-oriented restoration should not be seen as an alternative either to the latter, or to the conservation dealing with particular threatened species(species-targeted conservation). These three conservation approaches, traditional ecological restoration, species-targeted conservation, and conservation-oriented restoration differ not only in broadly defined goals and attributes of their targets, but also in the types of ecosystems they are applicable to, and complement each other in combating global deterioration of the environment and biodiversity loss.  相似文献   

4.
There is an urgent need for a new conservation approach as mere designation of protected areas, the primary approach to conserving biodiversity, revealed its low conservation efficiency and inability to cope with numerous challenges faced by nature in the Anthropocene. The paper discusses the new concept, which proposes that ecological restoration becomes an integral part of conservation planning and implementation, and is done using threatened plant species that are introduced not only into locations where they currently grow or grew in the recent past, but also into suitable locations within their potential distribution range. This new concept is called conservation-oriented restoration to distinguish it from the traditional restoration. Although the number of restoration projects focusing on recreation of once existing natural habitats is instantly growing, the majority of ecological restoration projects, in contrast to conservation-oriented restoration, have predominantly utilitarian goals, e.g.improvement or air quality, erosion control or soil replenishment. Conservation-oriented restoration should not be seen as an alternative either to the latter, or to the conservation dealing with particular threatened species(species-targeted conservation). These three conservation approaches, traditional ecological restoration, species-targeted conservation, and conservation-oriented restoration differ not only in broadly defined goals and attributes of their targets, but also in the types of ecosystems they are applicable to, and complement each other in combating global deterioration of the environment and biodiversity loss.  相似文献   

5.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

6.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

7.
The relationships between species diversity and ecosystem functions are in the focus of recent ecological research. However, until now the influence of species diversity on ecosystem processes such as decomposition or mineral cycling is not well understood. In deciduous forests, spiders are an integral part of the forest floor food web. In the present study, patterns of spider diversity and community structure are related to diversity of deciduous forest stands in the Hainich National Park (Thuringia). In 2005, pitfall trapping and quantitative forest floor sampling were conducted in nine plots of forest stands with one (Diversity Level 1), three (DL 2) and five (DL 3) major deciduous tree species. Species richness, measured with both methods, as well as spider abundance in forest floor samples were highest in stands with medium diversity (DL 2) and lowest in pure beech stands (DL 1). The Shannon-Wiener index and spider numbers in pitfall traps decreased from DL 1 to DL 3, while the Shannon-Wiener index in forest floor samples increased in the opposite direction. Spider community composition differed more strongly between single plots than between diversity levels. Altogether, no general relationship between increasing tree species diversity and patterns of diversity and abundance in spider communities was found. It appears that there is a strong influence of single tree species dominating a forest stand and modifying structural habitat characteristics such as litter depth and herb cover which are important for ground-living spiders.  相似文献   

8.
Novel or emergent ecosystems arising from human action present both threats and opportunities for biodiversity. It has been suggested that exotic species can “facilitate” or “inhibit” native biodiversity through habitat modification. In Britain, there is a discussion over the contribution to biodiversity of plantations of exotic conifer species as these are commonly thought to have little relevancy as a habitat for native biodiversity. To address this we compared the species richness of a range of different taxonomic groups (lichens, bryophytes, fungi, vascular plants, invertebrates and songbirds) in exotic and native forest stands of differing structural stages in northern and southern Britain. In terms of overall native species-richness there was no significant difference between the exotic and the native stands. In the north, six species groups showed higher values in the exotic Sitka spruce (Picea sitchensis) stands with the remaining six showing higher values in the native Scots pine (Pinus sylvestris) stands. Most notably, lichen species richness was much lower in the exotic stands compared to the native stands, whereas bryophyte and fungal species richness was proportionately higher in the exotic stands. In the south, five species groups (all invertebrate taxa) showed higher species richness in exotic Norway spruce (Picea abies) stands compared to native oak (Quercus robur) stands. Five species groups had higher species-richness in the oak stands, in particular lichens and fungi. It is concluded that emergent ecosystems of exotic conifer species are not irrelevant to biodiversity. Where already well-established they can provide habitat for native species particularly if native woodland is scarce and biodiversity restoration is an immediate priority.  相似文献   

9.
Populus: arabidopsis for forestry. Do we need a model tree?   总被引:1,自引:0,他引:1  
Taylor G 《Annals of botany》2002,90(6):681-689
Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the small-statured arabidopsis. Recent advances in the development of large expressed sequence tagged collections, microarray analysis and the free distribution of mapping pedigrees for quantitative trait loci analysis secure Populus as the ideal subject for further exploitation by a wide range of scientists including breeders, physiologists, biochemists and molecular biologists. In addition, and in contrast to other model plants, the genus Populus also has genuine commercial value as a tree for timber, plywood, pulp and paper.  相似文献   

10.
Many plant species produce large fruit crops in some years and then produce few or no fruits in others. Synchronous, inter‐annual variation in plant reproduction is known as ‘masting’ and its adaptive significance has yet to be fully resolved. For 8 consecutive years, I quantified every fruit produced by 22 females of a New Zealand tree species (Dysoxylum spectabile), which has an unusual habit of taking a full calendar year to mature fruits after flowering. Fruit production varied strongly among years and was tightly synchronized among trees. Annual variability in fruit production declined with total reproductive output, indicating trees with lower fecundity exhibited a stronger tendency to mast. Although unrelated to temperature, annual fruit production was positively related to precipitation during annual periods of fruit development, and negatively related to fruit production in the previous year. Seedlings had higher rates of survivorship in a wet, high‐seed year than in a dry, low‐seed year, suggesting that seedlings might be drought sensitive. Therefore, D. spectabile produced large fruit crops during periods of high rainfall prior to fruit maturation, which may enhance survivorship of drought‐intolerant seeds. Results were inconsistent with several hypotheses that are widely believed to be the most likely explanations for masting. Instead, results were consistent with the environmental prediction hypothesis, suggesting that this hypothesis may be more important than previously appreciated.  相似文献   

11.
Alan D. Steinman 《Oecologia》1992,91(2):163-170
Summary Irradiance level and grazer density were manipulated in a factorial design to examine the relative effects of biotic and abiotic factors on periphyton biomass, productivity, and taxonomic structure in a heavily grazed, woodland stream. Irradiance levels were increased from 0.26 to 12.42 mol quanta/m2/d by placing metal halide lamps over the stream. The major grazer in this system was the prosobranch snail Elimia clavaeformis. Its densities were reduced from ca. 750 individuals/m2 to near zero by raising platforms off the stream bottom. Experimental treatments were maintained for 48 days. Biomass-specific carbon fixation rates increased significantly in response to higher light levels, indicating that periphyton communities were light-limited at this time of year. However, positive effects of irradiance on areal-specific carbon fixation and biomass were detected only when grazer density was reduced. Basal cells of the chlorophyte Stigeoclonium dominated communities exposed either to low light or high grazing pressure. When light was increased and grazer density reduced, large or upright diatoms became more abundant. Results from this study indicated that limitation of periphyton photosynthesis could be mitigated by increasing the levels of an abiotic resource (light) to this system, but that periphyton biomass was controlled by biotic interactions.  相似文献   

12.
13.
With increasing restoration initiatives for coastal wetlands, the question of ‘What are we restoring to?’ becomes more pressing. The goal of this paper is to explore restoration concepts, examples, and challenges from the Pacific and Gulf coasts. One of the fundamental concepts explored is change over time – either in the controlling processes or the restoration structure – and how such changes can be meshed with the goals of various restoration efforts. We subsequently review the concepts of ecosystem trajectories, alternative restoration approaches, and the ideal attributes of functional self-sustaining restoration in the context of realities of restoration planning, design, and implementation. These realities include the dynamics of the ecosystems being restored, very real constraints that are imposed by the contemporary physical and human landscape, and the need to plan for the long term development of restoration sites recognizing that both project performance and expectations may change over time.  相似文献   

14.
15.
The foliage palatability hypothesis predicts that avian insectivores will preferentially forage in tree species with the greatest abundance of their arthropod prey, which in turn are associated with the tree’s foliage nutrition and palatability. We tested this hypothesis in a novel ProsopisLeucaena woodland in Puerto Rico by determining foraging preferences of five insectivorous bird species for six tree species (five alien, one native) and relating preferences to foliage arthropod biomass and leaf chemistry. The most frequently preferred tree species for foraging were the alien Prosopis juliflora (preferred by five bird species) and Pithecellobium dulce (preferred by four bird species). Both species had high foliage arthropod biomass, high N content, low lignin/N ratios, and low hemicellulose content. Compounds, previously known to affect herbivore responses to Albizia lebbeck and Leucaena leucocephala, may explain low arthropod biomass despite high N content in Albizia and avoidance of Leucaena by four bird species despite its high arthropod biomass. The native Bucida buceras had tough leaves with low N content, low arthropod biomass, and only one bird species showed a weak preference for foraging in it. Biomass of predaceous arthropods showed strong negative correlations with the ratios of lignin/N and hemicellulose/N. Some alien tree species had highly palatable foliage with high arthropod biomass and hence were preferred for foraging by avian insectivores as predicted by the foliage palatability hypothesis. High foliage palatability of some alien tree species may weaken the effect of enemy release in some novel plant communities.  相似文献   

16.
Lopez OR  Kursar TA 《Oecologia》2003,136(2):193-204
In the tropics, seasonally flooded forests (SFF) harbor fewer tree species than terra firme (i.e. non-flooded) forests. The low species diversity of tropical flooded forests has been ascribed to the paucity of species with adaptations to tolerate flooding. To test the hypothesis that flooding is the only factor restricting most species from SFF, we compared plant morphological and physiological responses to flooding in 2-month old seedlings of 6 species common to SFF and 12 species common to terra firme forests. Although flooding impaired growth, total biomass, maximum root length and stomatal conductance in most species, responses varied greatly and were species-specific. For example, after 90 days, flooding reduced leaf area growth by 10-50% in all species, except in Tabebuia, a common species from non-flooded habitats. Similarly, flooding had a 5-45% negative effect on total biomass for all species, except in 1 SFF and 1 terra firme species both of which had more biomass under flooding. A principal component analysis, using the above responses to flooding, provided no evidence that SFF and terra firme species differed in their responses to flooding. Flooding also caused reductions in root growth for most species. Rooting depth and root: shoot ratios were significantly less affected by flooding in SFF than in terra firme species. Although flood tolerance is critical for survival in flooded habitats, we hypothesize that responses to post-flooding events such as drought might be equally important in seasonal habitats. Therefore, we suggest that the ability to grow roots under anoxia might be critical in predicting success in inundated habitats that also experience a strong dry season.  相似文献   

17.
18.
There is evidence for the existence of varying degrees of host preference in vascular epiphytes; certain tree species can be positively, neutrally, or negatively associated with epiphytes. The objective of this study was to evaluate whether tree species of the cloud forest differ in their suitability as a substrate for epiphytic bromeliads. To evaluate the association between epiphytic bromeliad cover and host tree species, we sampled 62 plots (each of 200 m2) in four cloud forest fragments in Veracruz, Mexico. For all trees ≥10 cm in diameter at breast height (DBH), we recorded species name, DBH, and percentage cover of bromeliads in categories of tree coverage. In total, 587 trees belonging to 52 species were recorded. All of the 10 tree species used to assess differences in epiphyte cover (each with a minimum of nine individuals) supported bromeliads, but mean bromeliad cover differed significantly among the tree species. The tree species that concentrated the highest bromeliad cover were Quercus sartorii (29.86%) and Liquidambar styraciflua (21.72%). Our results indicate that, while none of the tree species analyzed was a limiting host for epiphytic bromeliads in general, varying levels of bromeliad cover occur depending on the host species in tropical montane cloud forest fragments suggesting that certain tree species are better hosts than others. The implications for conservation efforts of differential tree species suitability as epiphyte hosts are discussed.  相似文献   

19.
Conspecific brood parasitism (CP) is a facultative breeding tactic whereby females lay their eggs in the nests of conspecifics. In some species, potential hosts have evolved the ability to identify and reject foreign eggs from their nest. Previous studies suggest that the ubiquitous house sparrow Passer domesticus in Spain and South Africa employs both CP and egg rejection, while a population in China does not. Given the species’ invasive range expansions, the house sparrow represents a potentially excellent global model system for parasitic egg rejection across variable ecological conditions. We examined the responses of house sparrows to experimental parasitism at three geographically distinct locations (in Israel, North America, and New Zealand) to provide a robust test of how general the findings of the previous studies are. In all three geographic regions egg rejection rates were negligible and not statistically different from background rates of disappearance of control eggs, suggesting that the house sparrow is not a suitable model species for egg rejection experiments on a global scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号