首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the limitations and side effects of many synthetic drugs, natural products are an important alternative source for drugs and medications for many diseases. Icariin (ICA), one of the main flavonoids from plants of the Epimedium genus, has been shown to ameliorate osteoporosis and improve bone health in preclinical studies. Those studies have used different in vivo models, mostly rodents, but the underlying mechanisms remain unclear. The present study shows, for the first time, that ICA reduces bone damage in a Rankl-induced medaka fish (Oryzias latipes), a non-rodent osteoporosis model. Live imaging was previously performed in this model to characterize antiresorptive and bone-anabolic properties of drugs. Here, a new quantification method (IM) was established based on the length of mineralized neural arches to quantify levels of bone mineralization damage and protection in early post-embryonic fish. This method was validated by quantification of three levels of bone damage in three independent Rankl fish lines, and by the determination of different degrees of severity of osteoporosis-like phenotypes in one Rankl line exposed to variable Rankl induction schemes. IM was also used to quantify the efficacy of alendronate and etidronate, two common anti-osteoporotic bisphosphonates, and revealed comparable bone protective effects for ICA and alendronate in this fish osteoporosis model. This study's data support the value of the medaka fish model for bone research and establish a method to screen for novel osteoprotective compounds.  相似文献   

2.
The presence of intermuscular bones in fisheries products limits the consumption and commercialization potential of many fish species, including tambaqui (Colossoma macropomum). These bones have caused medical emergencies and are an undesirable characteristic for fish farming because their removal is labor-intensive during fish processing. Despite the difficulty in identifying genes related to the lack of intermuscular bone in diverse species of fish, the discovery of individuals lacking intermuscular bones in a Neotropical freshwater characiform fish has provided a unique opportunity to delve into the genetic mechanisms underlying the pathways of intermuscular bone formation. In this study, we carried out a GWAS among boneless and wt tambaqui populations to identify markers associated with a lack of intermuscular bone. After analyzing 11 416 SNPs in 360 individuals (12 boneless and 348 bony), we report 675 significant (Padj < 0.003) associations for this trait. Of those, 13 associations were located near candidate genes related to the reduction of bone mass, promotion of bone formation, inhibition of bone resorption, central control of bone remodeling, bone mineralization and other related functions. To the best of our knowledge, for the first time, we have successfully identified genes related to a lack of intermuscular bones using GWAS in a non-model species.  相似文献   

3.
The aim of the present study was to examine if dietary inclusion of vegetable lipids (VL) and proteins (VP) influenced markers of bone health in Atlantic salmon. Triplicate groups were fed one of four different diets; 100% fish protein (FP) and fish lipids (FL) (FPFL), 80% VP and 35% VL (80VP35VL), 40% VP and 70% VL (40VP70VL), or 80% VP and 70% VL (80VP70VL) for 12 months on‐growth in sea water. Fish were analyzed for vertebral bone mineralization (mineral content, as % of bone dry weight), vertebral deformities (radiology), vertebral bone mRNA expression of factors involved in mineralization (bone gla protein, bgp) and growth regulation (igf‐I and growth hormone receptor), as well as plasma vitamin D metabolites. The fish grew from 0.35 to 4 kg during the experimental period. At the end of the experiment, significantly lower prevalence of fish with one or more deformed vertebrae was observed in the 80VP70VL group (11%) compared to the other groups (33–43%). There was a significant higher relative expression of igf‐I mRNA in vertebral bone of fish fed the 80VP70VL diet compared to control fish (FPFL), while the other genes studied were unaffected. Elevated plasma 25‐hydroxyvitamin D3 recorded in the marine feed group is discussed as a predictor for later development of bone deformities. In conclusion, the present study shows that high inclusion levels of vegetable lipids and proteins may have a positive effect on bone health in Atlantic salmon postsmolts.  相似文献   

4.
Small teleost fish, such as the medaka (Oryzias latipes), are attractive animal models to study the genetics underlying bone formation. In order to characterize specific marker genes for bone formation in medaka, we identified and analyzed the gene expression of collagen type10a1 and osteocalcin during embryonic and larval development. In mammals and chicken, Collagen type 10a1 is expressed in hypertrophic chondrocytes. Osteocalcin, on the other hand, is expressed in mature osteoblasts, which have started to produce mineralized bone matrix. In contrast to mammals and chicken, expression of collagen type 10a1 during medaka embryogenesis is not found in chondrocytes but instead is restricted to intramembranous and perichondral bone formation. Therefore, collagen type 10a1 expression marks early osteoblasts. Osteocalcin, on the other hand is expressed in mature osteoblasts in mineralizing intramembranous and perichondral bone.  相似文献   

5.
Human bone diseases represent a major health problem worldwide and effective therapies have still to be developed. Despite numerous studies using mammalian systems, cellular and molecular processes governing bone and cartilage homeostasis in vertebrates are still not fully understood. Recently, fish have emerged as a suitable model and a promising alternative to the classical mammalian systems to study vertebrate development, in particular skeletogenesis. To complement in vivo developmental studies and identify signalling pathways involved in development processes, fish cell lines have been developed, in particular bone‐derived cells. This work intends to review what is presently known about fish bone‐derived cell lines, focusing on their relevance for bone biology studies.  相似文献   

6.
Immobilization, such as prolonged bed rest, is a risk factor for bone loss in humans. Motivated by the emerging utility of zebrafish (Danio rerio) as an animal of choice for the study of musculoskeletal disease, here we report a model of restricted mobility induced osteopenia in adult zebrafish. Aquatic tanks with small cubical compartments to restrict the movement and locomotion of single fish were designed and fabricated for this study. Adult zebrafish were divided into two groups: a normal control (CONT) and a restricted mobility group (RMG) (18 fish/group). Six fish from each group were euthanized on days 14, 21 and 35 of the movement restriction. By using microcomputed tomography (micro-CT), we assessed bone volume/tissue volume (BV/TV) and bone density in the whole skeleton of the fish. Furthermore, we assessed skeletal shape in the vertebrae (radius, length, volume, neural and haemal arch aperture areas, neural and haemal arch angle, and thickness of the intervertebral space), single vertebra bone volume and bone density. Movement restriction significantly decreased vertebral skeletal parameters such as radius, length, volume, arch aperture areas and angles as well as the thickness of the intervertebral space in RMG. Furthermore, restricted mobility significantly (P < 0.001) decreased BV/TV and bone density as compared to the CONT group, starting as early as 14 days. By analysing zebrafish from CONT and RMG, we show that micro-CT imaging is a sensitive method to quantify distinct skeletal properties in zebrafish. We further defined the micro-CT parameters which can be used to examine the effects of restricted mobility on the skeleton of the fish. Our findings propose a rapid and effective osteopenia “stabulation” model, which could be used widely for osteoporosis drug screening.  相似文献   

7.
The anthocyanin delphinidin is a natural compound found as water-soluble pigment in coloured fruits and berries. Anthocyanin-rich diets have been proposed to have bone protective effects in humans and mice, but the underlying mechanisms remain unclear. In this study, we used a medaka (Oryzias latipes) osteoporosis model to test the effects of delphinidin on bone cells in vivo. In this model, inducible transgenic expression of receptor-activator of NF-kβ ligand (Rankl) leads to ectopic formation of osteoclasts and excessive bone resorption, similar to the situation in human osteoporosis patients. Using live imaging in medaka bone reporter lines, we show that delphinidin significantly reduces the number of osteoclasts after Rankl induction and protects bone integrity in a dose-dependent manner. Our in vivo findings suggest that delphinidin primarily affects the de novo differentiation of macrophages into osteoclasts rather than the recruitment of macrophages to sites of bone resorption. For already existing osteoclasts, delphinidin treatment affected their morphology, leading to fewer protrusions and a more spherical shape. Apoptosis rates were not increased by delphinidin, suggesting that osteoclast numbers were reduced primarily by impaired differentiation from macrophage progenitors and reduced maintenance of pre-existing osteoclasts. Importantly, and in contrast to previously reported cell culture experiments, no effect of delphinidin on osteoblast differentiation and distribution was observed in medaka in vivo. Our study is the first report on the effects of delphinidin on bone cells in fish embryos, which are a unique model system for compound testing that is suitable for live imaging of bone cell behaviour in vivo.  相似文献   

8.
Abstract: A new fossil osteoglossid fish, Taverneichthys bikanericus gen. et sp. nov. and an unnamed but probable new species of ?Lepisosteus (Lepisosteidae) are described from the subsurface beds of the Palana (lignite) Formation near Bikaner, western Rajasthan, India. T. bikanericus is founded on a skull, which is the first osteoglossid skull from the Indian subcontinent, whereas ?Lepisosteus sp. is represented by a part of its trunk covered with ganoid scales. The taxonomic assignment of the latter specimen to gars is based on the micro‐ and ultrastructure of its scales. Taverneichthys is included in the Osteoglossinae because it shares at least three of the seven diagnostic characters of the subfamily: (1) jaw articulation behind the vertical midline of orbit, (2) palatine and ectopterygoid fused to form palato‐ectopterygoid, and (3) horizontal arm of preopercle short, ending anteriorly behind orbit (inferred). It is characterized by a considerably larger dermethmoid bone and the two nasals that are in contact with each other behind it separating this bone from the frontals. In this respect it is more evolved than Cretophareodus and Phareodus, and closer to Brychaetus, Musperia, Opsithrissops and modern osteoglossids. The fossils documented herein are the first vertebrate remains from the Palana Formation. They were recovered from a highly indurated greyish‐black calcareous shale approximately 90 m below ground level from a dug‐well section. The occurrence of fossil remains of osteoglossid and lepisosteid fish in the Palana Formation, both of which are among the major predators of a terrestrial aquatic community, and their association with the crocodilian remains, are indicative of the mature and diverse nature of the Palana vertebrate community. It postulates the recovery of a varied assemblage of vertebrates, especially fish and crocodilians and possibly also mammals. The association of osteoglossid and lepisosteid fish characterizes a dominantly freshwater deposit and is consistent with a Paleocene age for the Palana Formation. The known distribution of fossil and living osteoglossid and lepisosteid fish suggests a marked shift in their climatic adaptability in time and space. Their close association in the fossil record, especially in the Indian subcontinent, is well documented, but today they thrive in different climatic zones.  相似文献   

9.
This study evaluated the seasonal accumulation of boron and fluoride in different tissues of a common edible fish, Tilapia nilotica, from an Egyptian fish farm as well as their hazard to human health. Among all the determined fish tissues, brain, liver, and bone were the ones that accumulated the highest boron and fluoride contents. Interestingly, flesh tissue showed the lowest boron and fluoride concentrations (0.30 ± 0.06 and 2.50 ± 1.57 μg/g, respectively). Statistical analyses using Pearson correlation matrix and multiple regression procedures indicated that boron accumulation was highest amongst flesh, liver, brain, and bone tissues. Additionally, fluoride content in water affects its abundance in the different fish tissues: flesh, gills, bone, and skin. Human hazard assessment of fluoride and boron from water, sediment, and fish flesh tissue was studied using calculations that considered chronic daily intake from water, sediment, and fish; chronic exposure from dermal contact and ingestion of water; and fish as well as a single acute human dose. These calculations indicated that the consumption of Tilapia nilotica is still safe as regards boron intake, but for fluoride, it may pose a hazard to human health in the long term.  相似文献   

10.
The aim of this study was to investigate the possible influence of environmental exposure to cadmium (Cd) on the spinal deformities occurrence in the Mediterranean killifish, Aphanius fasciatus (Pisces: Cyprinodontidae). For this purpose, some indicators of skeletal bone mineralization, Cd, and calcium (Ca) concentrations in spinal column as well as bioaccumulation of Cd from the water and the sediment have been compared in normal and deformed fish collected from polluted (S1) and nonpolluted (S2) areas in the Gulf of Gabès in Tunisia. When compared to the normal fish, the deformed fish showed signs of spinal column demineralization such as significant decrease in the ash weight/dry weight ratio, percentage of nonorganic components content, and Ca concentration. Cd concentrations in spinal column and liver were significantly higher in deformed fish than in normal fish. A highly significant negative correlation (r = −0.915, p < 0.01) between Cd and Ca concentrations was noted in spinal column of deformed fish. Bioaccumulation factors of Cd in the liver from the water and the sediment in deformed fish were also significantly higher (p < 0.0001) than in normal fish from S1 and S2. These findings suggest that the ability to accumulate large amount of Cd may represent a potential risk to induce spinal deformities in natural populations of Mediterranean killifish.  相似文献   

11.
Resorption and remodelling of skeletal tissues is required for development and growth, mechanical adaptation, repair, and mineral homeostasis of the vertebrate skeleton. Here we review for the first time the current knowledge about resorption and remodelling of the skeleton in teleost fish, the largest and most diverse group of extant vertebrates. Teleost species are increasingly used in aquaculture and as models in biomedical skeletal research. Thus, detailed knowledge is required to establish the differences and similarities between mammalian and teleost skeletal remodelling, and between distantly related species such as zebrafish (Danio rerio) and medaka (Oryzias latipes). The cellular mechanisms of differentiation and activation of osteoclasts and the functions of teleost skeletal remodelling are described. Several characteristics, related to skeletal remodelling, distinguish teleosts from mammals. These characteristics include (a) the absence of osteocytes in most species; (b) the absence of haematopoietic bone marrow tissue; (c) the abundance of small mononucleated osteoclasts performing non‐lacunar (smooth) bone resorption, in addition to or instead of multinucleated osteoclasts; and (d) a phosphorus‐ rather than calcium‐driven mineral homeostasis (mainly affecting the postcranial dermal skeleton). Furthermore, (e) skeletal resorption is often absent from particular sites, due to sparse or lacking endochondral ossification. Based on the mode of skeletal remodelling in early ontogeny of all teleosts and in later stages of development of teleosts with acellular bone we suggest a link between acellular bone and the predominance of mononucleated osteoclasts, on the one hand, and cellular bone and multinucleated osteoclasts on the other. The evolutionary origin of skeletal remodelling is discussed and whether mononucleated osteoclasts represent an ancestral type of resorbing cells. Revealing the differentiation and activation of teleost skeletal resorbing cells, in the absence of several factors that trigger mammalian osteoclast differentiation, is a current challenge. Understanding which characters of teleost bone remodelling are derived and which characters are conserved should enhance our understanding of the process in fish and may provide insights into alternative pathways of bone remodelling in mammals.  相似文献   

12.
Teleost fish have recently been implemented as suitable model organisms to study vertebrate development, in particular skeletogenesis. In vitro cell systems derived from fish bone have been successfully established, although their development has been hampered by the limited availability of fish serum to supplement culture medium. Commercially available sera are mostly of mammalian origin and thus not necessarily adequate to fish cell growth. The main objective of this work was to compare proliferative and mineralogenic potential of bovine and fish sera using fish bone‐derived cell lines VSa13 and VSa16. Fish serum was shown to (i) strongly stimulate cell proliferation in an apparent dose‐dependent and cell type‐specific manner, (ii) induce morphological changes, and (iii) enhance extracellular matrix mineralization of bone cells, although cytotoxic for fish osteoblast‐like cells at the concentration tested. To better understand mechanisms underlying mineralogenic effect of fish serum in fish chondrocytes, expression of several mineralization‐related genes was evaluated by qPCR. Regulation of matrix Gla protein (MGP) and bone morphogenetic protein 2 (BMP2) gene expression was modified upon culture with fish serum in a way compatible with an early onset and an increase in mineralization. In conclusion, fish serum was shown to be more adequate to proliferation and differentiation/mineralization of fish bone‐derived cells.  相似文献   

13.
Bone modeling is the central system controlling the formation of bone including bone growth and shape in early development, in which bone is continuously resorbed by osteoclasts and formed by osteoblasts. However, this system has not been well documented, because it is difficult to trace osteoclasts and osteoblasts in vivo during development. Here we showed the important role of osteoclasts in organogenesis by establishing osteoclast-specific transgenic medaka lines and by using a zebrafish osteoclast-deficient line. Using in vivo imaging of osteoclasts in the transgenic medaka carrying an enhanced GFP (EGFP) or DsRed reporter gene driven by the medaka TRAP (Tartrate-Resistant Acid Phosphatase) or Cathepsin K promoter, respectively, we examined the maturation and migration of osteoclasts. Our results showed that mononuclear or multinucleated osteoclasts in the vertebral body were specifically localized at the inside of the neural and hemal arches, but not at the vertebral centrum. Furthermore, transmission electron microscopic (TEM) analyses revealed that osteoclasts were flat-shaped multinucleated cells, suggesting that osteoclasts initially differentiate from TRAP-positive mononuclear cells residing around bone. The zebrafish panther mutant lacks a functional c-fms (receptor for macrophage colony-stimulating factor) gene crucial for osteoclast proliferation and differentiation and thus has a low number of osteoclasts. Analysis of this mutant revealed deformities in both its neural and hemal arches, which resulted in abnormal development of the neural tube and blood vessels located inside these arches. Our results provide the first demonstration that bone resorption during bone modeling is essential for proper development of neural and vascular systems associated with fish vertebrae.  相似文献   

14.
The identification of fish species from head bone remains is employed in various sciences, including archaeology, paleontology and field ecology, with the estimation of fish size from biometric relationships being useful in the assessment of predation pressure exerted by increasing numbers of piscivorous species (e.g. Eurasian otter Lutra lutra and great cormorant Phalacrocorax carbo). This is particularly relevant for crucian carp, Carassius carassius, which is in decline in Europe due to changes in land use and to increasing numbers of non‐native Carassius species (i.e. goldfish C. auratus, gibel carp C. gibelio), which hybridize with C. carassius. However, diagnostic keys and biometric relationships are lacking for C. carassius and its most common hybrids, crosses with C. auratus. The present paper addresses this gap in knowledge, providing diagnostic keys and biometric relationships for the head bones of all Carassius species found in Europe as well as for C. carassius × C. auratus hybrids. All bone size to body length relationships were statistically significant. Similarly, all bone size to body weight relationships were significant for C. carassius, C. auratus, and C. gibelio, but none were significant for C. carassius × C. auratus hybrids. Diagnostic structures were found to distinguish easily between the Carassius species and hybrids, which will assist in determining the identity and sizes of prey found in faecal and archaeological remains.  相似文献   

15.
On the basis of five specimens, the icefish Dacodraco hunteri (Notothenioidei, Channichthyidae) is documented for the first time in the Ross Sea, Antarctica. Meristic counts and morphometric measurements are provided for this small, streamlined, laterally compressed species. D. hunteri has a weakly ossified skeleton with considerable cartilage in the skull. It has a partially persistent notochord and reduced amounts of bone in the vertebral column since the centra are incompletely constricted. Its weight in seawater averages only 1.28% of its weight in air and, as one of the lightest notothenioids, D. hunteri is probably a permanent inhabitant of the water column. The diet consists of relatively large specimens of the pelagic nototheniid fish Pleuragramma antarcticum. Accepted: 27 September 1998  相似文献   

16.
In spite of the exuberance of recent approaches to age determination of fish, many ecologists are convinced that the most valid method is age reading from permanent marks or growth rings laid on skeletal parts. Of the known structures used, only the vertebrae are suitable and readable for a large variety of species and sizes. Examination of different skeletal structures of Labeo horie, a Cyprinid collected from Jebel Aulia reservoir, revealed that the frontal bone carried well-defined growth rings. The validity of these rings was checked against other direct and indirect methods of age determination. Results proved to be statistically valid, and the frontal bone offers an additional device of age determination of L. horie.  相似文献   

17.
Sicyopterus japonicus (Teleostei, Gobiidae), a hill‐stream herbivorous gobiid fish, possesses an unusual oral dentition among teleost fishes on account of its feeding habitat. By using scanning electron microscopy, light microscopy, and transmission electron microscopy, including vital staining with tetracycline, we examined the development of the attachment tissues of the upper jaw teeth in this fish. The functional teeth of S. japonicus had an asymmetrical dentine shaft. The dentine shaft attached to the underlying uniquely shaped pedicel by means of two different attachment mechanisms. At the lingual base, collagen fiber bundles connected the dentine shaft with the pedicel (hinged attachment), whereas the labial base articulated with an oval‐shaped projection of the pedicel (articulate attachment). The pedicel bases were firmly ankylosed to the crest of the thin flange of porous spongy bone on the premaxillary bone, which afforded a flange‐groove system on the labial surface of the premaxillary bone. Developmentally, the pedicel and thin flange of spongy bone were completely different mineralized attachment tissues. The pedicel had a dual origin, i.e., the dental papilla cells, which differentiated into odontoblasts that constructed the internal surface of the pedicel, and the mesenchymal cells, which differentiated into osteoblasts that formed the outer face of the pedicel. A thin flange of spongy bone was deposited on the superficial resorbed labial side of the premaxillary bone proper, and later rapid bone remodeling proceeded toward the pedicel base. These unique features of pedicellate tooth attachment for the upper jaw teeth in the adult S. japonicus are highly modified teeth for enhancing the ability of individual functional teeth to move closely over irregularities in the rock surfaces during the scraping of algae. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
In this study, length‐length relationships (LLRs) and weight‐length relationships (WLRs) were established for a Carangidae species: Uraspis helvola and tow Flatfishes: Pseudorhombus elevatus and Psettodes erumei that are substantial marine fish species to commercial fisheries in Persian Gulf that are indigenous marine fish species in the region. Samples were collected by non‐selective fish bottom trawler with stretch mesh size of 4 centimeters at the cod‐end area, which helped us to obtain such a broad range size that included small, medium and large size classes during June to August 2017. Hitherto, the length‐weight model presented in this study for Pseudorhombus elevatus and Uraspis helvola were not documented on Fishbase. Additionally, new records of maximum length are presented as 64.5 and 30 centimeters for P. erumei and P. elevatus respectively. A comprehensive size distribution and highly significant fitted model (r2>0.95) in this research provides useful insight for future studies on fish biology, fisheries assessment and ecological modeling.  相似文献   

19.
Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 μM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85 ± 0.40 versus 3.95 ± 0.10 μg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 μM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems. Daniel M. Tiago and Vincent Laizé1 contributed equally to this work.  相似文献   

20.
The objective of this study was to elucidate the potential of synchrotron radiation‐based microcomputer tomography as a non‐destructive method to visualize hard tissue in fish with high resolution. The high X‐ray contrast between mineralized tissue (bone and teeth) and soft tissue permits an easy differentiation. The nature of this method avoids preparation artefacts which may occur during the preparation for histology or scanning electron microscopy. The spatial resolution is of the order of a few μm, depending on the sample. Results obtained for the species medaka (Oryzias latipes) and zebrafish (Danio rerio) are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号