首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.  相似文献   

2.
3.
The effect of basic peptides on the gelation of a pectin from the cell wall of tomato was examined through the determination of gel stiffness, and swelling behaviour of the gel in water. Poly-L-lysine, poly-L-arginine, and a synthetic peptide, designed to mimic a sequence of basic amino acids found in a plant cell wall extensin, act as crosslinking agents. Circular dichroism studies on the interaction of synthetic extensin peptides with sodium polygalacturonate demonstrated that a conformational change was induced as a result of their complexation. In addition to their effect as crosslinking agents, the polycationic peptides reduced the swelling of the pectin network in water.  相似文献   

4.
细胞壁在植物生殖生长中的作用   总被引:1,自引:0,他引:1  
植物细胞壁在生殖生长中起着重要作用,如胼胝质壁启动大小孢子母细胞的分化途径,影响大小孢子的发生和发育,启动花粉萌发和花粉管伸长;固定或稳定胚胎的极性轴,维持胚胎分化状况等。  相似文献   

5.
The role of nitric oxide (NO) in microvascular permeability remains unclear because both increases and decreases in permeability by NO synthase (NOS) inhibitors have been reported. We sought to determine whether blood-borne constituents modify venular permeability responses to the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We assessed hydraulic conductivity (L(p)) of pipette-perfused rat mesenteric venules before and after exposure to 10(-4) M L-NAME. In the absence of blood-borne constituents, L-NAME reduced L(p) by nearly 50% (from a median of 2.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 17, P < 0.001). The reduction in L(p) by L-NAME was inhibited by a 10-fold molar excess of L-arginine but not D-arginine (n = 6). In a separate group of venules, blood flow was allowed to resume during exposure to L-NAME. In vessels perfused by blood during L-NAME exposure, L(p) increased by 78% (from 1.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 10, P < 0.01). N(G)-nitro-D-arginine methyl ester did not affect L(p) in either of the two groups. These data imply that NO has direct vascular effects on permeability that are opposed by secondary changes in permeability mediated by blood-borne constituents.  相似文献   

6.
A series of conductive composites cellulose–polyaniline (PANI) were heterogeneously synthesized by chemical oxidative polymerization of aniline with native cellulose activated by various acids. The chemical structure and morphology of the composites were examined by FT-IR analysis and TEM. TGA was used to study their thermal properties. The composites prepared using the di-basic acids exhibited more favorable conductivity than the composites prepared using the monobasic acids. The content of PANI increased with increasing of activation time, and while the conductivity decreased because of the aggregation of PANI particles at the activation time range from 50 to 120 min. Both the PANI content and the electrical conductivity increased with an increase of the amount of aniline, and reached the maximum values at the 0.5 g aniline, respectively. The acids were able to successfully activate cellulose and lead to the improvement of the accessibility and reactivity of the O–H groups. The composites were highly stable compared to pure cellulose due to the safeguard from PANI slices. This work provided a facile method for the synthesis of cellulose–polyaniline conductive composites with excellent conductivity.  相似文献   

7.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

8.
Summary Colonies of Escherichia coli or Salmonella typhimurium that form colicin I often produce larger inhibition zones when the sex factor of their plasmid is de-repressed. In liquid culture, virtually all colicin I is cell-bound; colicin titres with de-repressed factors are only slightly greater than with the wild type; no more covalently-closed plasmid DNA is present; and no more plasmid-determined enzyme is formed. The large zones are therefore unlikely to reflect an increase in the number of plasmid genomes per cell. De-repressed factors make the cells susceptible to lytic agents, indicating a change in the cell wall, which may result in greater release of cell-bound colicin and so increase the size of inhibition zones. Salmonella typhimurium LT2 carries a plasmid of unknown function.  相似文献   

9.
At 'low' ionic strength, acid phosphatase bound to plant cell walls exhibits an apparent negative co-operativity, whereas it displays classic Michaelis-Menten kinetics in free solution. Conversely, at 'high' ionic strength, the bound enzyme and the soluble enzyme behave identically. This apparent negative co-operativity is explained by the existence of an electrostatic partition of the charged substrate by the fixed negative charges of the cell wall. Raising the ionic strength suppresses these electrostatic repulsion effects. Calcium may be removed from the cell walls by acid treatment and the acid phosphatase is apparently strongly inhibited. This inhibition occurs together with an increased apparent negative co-operativity of the enzyme. Incubating cell wall fragments previously depleted of calcium with CaCl2 restores the initial behaviour of the enzyme. Calcium, which tightly binds to cell wall pectic compounds, has by itself no effect on the enzyme in free solution. It affects the net charge of the cell wall and therefore the amplitude of electrostatic repulsion effects. Non-linear least-square fitting methods make it possible to estimate the density of fixed negative charges as well as the electrostatic partition coefficient, for both the 'native' and 'calcium-deprived' cell wall fragments. It may be shown directly that calcium loading and unloading in the cell wall controls the electrostatic effects, by monitoring proton extrusion from cell wall fragments upon raising the ionic strength. Proton outflux in the bulk phase is considerably enhanced upon removal of calcium from the cell walls. The main conclusion is that loading and unloading of calcium during cell elongation and division may regulate the activity of cell wall enzymes.  相似文献   

10.
The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis.  相似文献   

11.
12.
Columns were packed with clean quartz sand, sterilized, and inoculated with different strains of bacteria, which multiplied within the sand at the expense of a continuous supply of fresh nutrient medium. The saturated hydraulic conductivity (HCsat) of the sand was monitored over time. Among the four bacterial strains tested, one formed a capsule, one produced slime layers, and two did not produce any detectable exopolymers. The last two strains were nonmucoid variants of the first two. Only one strain, the slime producer, had a large impact on the HCsat. The production of exopolymers had no effect on either cell multiplication within or movement through the sand columns. Therefore, the HCsat reduction observed with the slime producer was tentatively attributed to the obstruction of flow channels with slime. Compared with the results with Arthrobacter sp. strain AK19 used in a previous study, there was a 100-fold increase in detachment from the solid substratum and movement through the sand of the strains used in this study. All strains induced severe clogging when they colonized the inlet chamber of the columns. Under these conditions, the inlet end was covered by a confluent mat with an extremely low HCsat.  相似文献   

13.
A sustainable bioeconomy that includes increased agricultural productivity and new technologies to convert renewable biomass to value-added products may help meet the demands of a growing world population for food, energy and materials. The potential use of plant biomass is determined by the properties of the cell walls, consisting of polysaccharides, proteins, and the polyphenolic polymer lignin. Comprehensive knowledge of cell wall glycan structure and biosynthesis is therefore essential for optimal utilization. However, several areas of plant cell wall research are hampered by a lack of available pure oligosaccharide samples that represent structural features of cell wall glycans. Here, we provide an update on recent chemical syntheses of plant cell wall oligosaccharides and their application in characterizing plant cell wall-directed antibodies and carbohydrate-active enzymes including glycosyltransferases and glycosyl hydrolases, with a particular focus on glycan array technology.  相似文献   

14.
Columns were packed with clean quartz sand, sterilized, and inoculated with different strains of bacteria, which multiplied within the sand at the expense of a continuous supply of fresh nutrient medium. The saturated hydraulic conductivity (HCsat) of the sand was monitored over time. Among the four bacterial strains tested, one formed a capsule, one produced slime layers, and two did not produce any detectable exopolymers. The last two strains were nonmucoid variants of the first two. Only one strain, the slime producer, had a large impact on the HCsat. The production of exopolymers had no effect on either cell multiplication within or movement through the sand columns. Therefore, the HCsat reduction observed with the slime producer was tentatively attributed to the obstruction of flow channels with slime. Compared with the results with Arthrobacter sp. strain AK19 used in a previous study, there was a 100-fold increase in detachment from the solid substratum and movement through the sand of the strains used in this study. All strains induced severe clogging when they colonized the inlet chamber of the columns. Under these conditions, the inlet end was covered by a confluent mat with an extremely low HCsat.  相似文献   

15.
Nowadays there is more and more evidence that mast cells take part in antibacterial defence. Mast cells have the ability to kill bacteria via phagocytose‐dependent or phagocytose‐independent ways and express antimicrobial peptides that can directly kill pathogens at their site of entry. What is more, mast cells are capable of processing bacterial antigens for presentation through class I and II MHC molecules. Some data indicate that these cells can release various proinflammatory mediators in response to activation with bacteria and/or their products, however this information is still far from complete. Therefore, in this study we examined the ability of PGN from Staphylococcus aureus, LPS from Eschericha coli and LAM from Mycobacterium smegmatis to stimulate mature rat mast cell degranulation as well as cysteinyl LT generation. We also studied the influence of these bacterial components on mast cell migration. We found that PGN, LPS and LAM all failed to induce mast cell degranulation and histamine release. At the same time, activation of mast cells with these bacterial antigens resulted in generation and release of significant amounts of LT. Moreover, we documented that, even in the presence of laminin, none of the bacterial antigens used stimulated mast cell migration. However, PGN did induce migration of RANTES‐primed mast cells, and LPS did stimulate mast cell migratory response after priming with IL‐6. Our results show that PGN, LPS and LAM might be among the important bacterial antigens involved in mast cell activation during bacterial infection.  相似文献   

16.
It was shown that 3-amino-3-deoxy-D-glucose, one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., inhibits the bacterial synthesis of cell wall. The antibiotic (100 μg/ml) significantly inhibits the growth of Straphylococcis aureus FDA 209P as well as the incorporation of DL-[14C]alanine into the acid-insoluble macromolecular fraction of its growing cells in the presence of chloramphenicol (100 μg/ml). In contrast, the antibiotic doed not affect the incorporation of [3H]thymidine, [3H]uridine and L-[14C]leucine. The other constituents of kanamycin, 6-amino-6-deoxy-D-glucose and deoxystreptamine do not inhibit the synthesis of bacterial cell wall peptidoglycan.  相似文献   

17.
Summary Many plant cell walls are constructed according to a helicoidal pattern that is analog to a cholesteric liquid crystal order. This raises the question whether the wall assembly passes through a true but temporary liquid crystal state. The paper focuses on experiments performed from aqueous suspensions of extracted quince slime, i.e., a cellulose/glucuronoxylan wall composite that presents a helicoidal order when observed in situ, within the enlarged periplasm of the seed epidermal cells. Experiments carried out in acellular conditions showed that a spontaneous reassociation into a helicoidal order can be obtained from totally dispersed suspensions. The ultrastructural aspect of the reassembled mucilage suspension was different according to the resin used (LR White or nanoplast, a water-soluble melamin resin). It was always typically polydomain, and when an order was visible it was cholesteric-like and similar to the in situ native organization. Transition states with many imperfections expressed the difficulty of the system to reassemble in the absence of constraining surfaces. The possible intervention of glucuronoxylan (GX) in the ordered assembly of the microfibrils was checked by: (1) progressive extraction of GX by trifluoroacetic acid (TFA). The extraction was associated to a control of the fraction by analysis of uronic acid contents and observation at the electron microscope level. Extraction of GX provoked the formation of a flocculent mass, the flocculation being more intense when the TFA was more concentrated; (2) progressive change of pH in order to analyze the influence of pH on flocculation. Low pH (ca. pH 3) led also to a flocculation of the suspension, but the floc was reversibly lost after dialysis against distilled water. The results indicate the antifloc role of the GX due to the anionic charges carried by the side-chains. However, the function of GX as helper twisting agent in the cholesteric-like reassembly must not be ruled out.  相似文献   

18.
《Biorheology》1996,33(1):17-44
We measured the specific hydraulic conductivity (K) of the human and bovine aortic wall, two tissues for which K has not been previously reported in the literature, and examined the effects of aging (human) and development (bovine) on K. As part of the study, we also examined the effects of mounting the tissue in a flat or cylindrical configuration and the effects of perfusion pressure. With aging, in the human, we found a modest increase of K with age in a flat geometry; this trend was not apparent in a limited number of measurements in a cylindrical geometry. No significant dependence of K on developmental stage was found in the bovine aortic wall perfused in either a flat or cylindrical geometry. Our results indicate that aging and developmental changes of the aortic extracellular matrix have minimal effects on its hydrodynamic transport properties as measured. Mounting geometry for the aorta has been a concern reported in the literature since Yamartino et al. (1974) reported that K in the rabbit was 10-fold lower when measured in a flat geometry than in a cylindrical geometry. We found mounting geometry to make only a small difference in the calf and the cow, (Kflat approximately 2/3 of Kcylindrical), and in the human, we found K to be somewhat higher in the flat geometry than in the cylindrical geometry. Higher perfusion pressures decreased K of bovine tissue in the flat geometry, but pressure was not found to have a significant effect on K in the cylindrical geometry. An analytical model demonstrated that the anisotropic nature of the aortic wall allows it to be compressible (water-expressing) and yet remain at nearly constant tissue volume as the aorta is pressurized in a cylindrical geometry.  相似文献   

19.
A rotating wall vessel, designed for growth of mammalian cells under microgravity, was used to study shear effects on Taxus cuspidata plant suspension cell cultures. Shear stress, as quantified by defined shear fields of Couette viscometers, improved specific cell growth rates and was detrimental to volumetric product formation rates. Received 5 January 1998/ Accepted in revised form 8 December 1998  相似文献   

20.
Internodes of Chara corallina were used for experiments in which cell turgor pressure was clamped by means of the pressure probe technique. Essentially, the procedure consisted of a combination of volume and turgor pressure relaxations. This technique permits the determination of the cell volume by nonoptical means. The values obtained are in agreement with the ones determined by optical means. Furthermore, the hydraulic conductivity (Lp) was determined from the initial slope of the volume relaxation; the values thus obtained are in agreement with those calculated from the half-times of pressure relaxations. The determination of Lp from volume relaxation measurements has the advantage that the cell volume, the volumetric elastic modulus of the cell wall, and the internal osmotic pressure do not have to be known. Furthermore, the half-time of volume relaxation is longer than that of pressure relaxation, as shown by theory and experiment. This may be used to enhance the resolution of the relaxation measurement and, thus, to improve the accuracy of Lp determinations for higher plant cells which exhibit a very fast pressure relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号