首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis BY‐kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP‐glucose dehydrogenases and single‐stranded DNA‐binding proteins. Our recent phosphoproteome study identified nine new tyrosine‐phosphorylated proteins in B. subtilis. We found that the majority of these proteins could be phosphorylated by PtkA in vitro. Among these new substrates, single‐stranded DNA exonuclease YorK, and aspartate semialdehyde dehydrogenase Asd were activated by PtkA‐dependent phosphorylation. Because enzyme activity was not affected in other cases, we used fluorescent protein tags to study the impact of PtkA on localization of these proteins in vivo. For several substrates colocalization with PtkA was observed, and more importantly, the localization pattern of the proteins enolase, YjoA, YnfE, YvyG, Ugd and SsbA was dramatically altered in ΔptkA background. Our results confirm that PtkA can control enzyme activity of its substrates in some cases, but also reveal a new mode of action for PtkA, namely ensuring correct cellular localization of its targets.  相似文献   

2.
Bacillus subtilis Mrp family protein SalA has been shown to indirectly promote the production of the exoprotease AprE by inhibiting the expression of scoC, which codes for a repressor of aprE. The exact mechanism by which SalA influences scoC expression has not been clarified previously. We demonstrate that SalA possesses a DNA‐binding domain (residues 1–60), which binds to the promoter region of scoC. The binding of SalA to its target DNA depends on the presence of ATP and is stimulated by phosphorylation of SalA at tyrosine 327. The B. subtilis protein‐tyrosine kinase PtkA interacts specifically with the C‐terminal domain of SalA in vivo and in vitro and is responsible for activating its DNA binding via phosphorylation of tyrosine 327. In vivo, a mutant mimicking phosphorylation of SalA (SalA Y327E) exhibited a strong repression of scoC and consequently overproduction of AprE. By contrast, the non‐phosphorylatable SalA Y327F and the ΔptkA exhibited the opposite effect, stronger expression of scoC and lower production of the exoprotease. Interestingly, both SalA and PtkA contain the same ATP‐binding Walker domain and have thus presumably arisen from the common ancestral protein. Their regulatory interplay seems to be conserved in other bacteria.  相似文献   

3.
4.
In the present study, we investigated the tyrosine phosphorylation of Bombyx mori prothoracic glands using phosphotyrosine‐specific antibodies and Western blot analysis. Results showed that prothoracicotropic hormone (PTTH) stimulates a rapid increase in tyrosine phosphorylation of at least 2 proteins in prothoracic glands, one of which was identified as extracellular signal‐regulated kinase (ERK). The phosphorylation of another 120‐kDa protein showed dose‐ and time‐dependent stimulation by PTTH in vitro. In vitro activation of tyrosine phosphorylation was also verified by in vivo experiments: injection of PTTH into day‐6 last‐instar larvae greatly increased tyrosine phosphorylation. Treatment of prothoracic glands with the protein tyrosine phosphatase inhibitor, sodium orthovanadate, also resulted in tyrosine phosphorylation of several proteins and increased ecdysteroidogenesis. The PTTH‐stimulated phosphorylation of the 120‐kDa protein was markedly attenuated by genistein, a broad‐spectrum tyrosine kinase inhibitor, but not by HNMPA‐(AM)3, a specific inhibitor of insulin receptor tyrosine kinase. PP2, a more‐selective inhibitor of the Src‐family tyrosine kinases, partially inhibited PTTH‐stimulated tyrosine phosphorylation, but not ecdysteroidogenesis. This result implies the possibility that in addition to ERK, the phosphorylation of the 120‐kDa protein, which is not Src‐family tyrosine kinase, is likely also involved in PTTH‐stimulated ecdysteroidogenesis in B. mori. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
6.
Focal adhesion kinase (FAK or pp125FAK) is a cytosolic protein tyrosine kinase which plays an important role in integrin‐mediated signal transduction. Adhesion of cells to the substratum correlates with an increase in tyrosine phosphorylation of FAK as well as an associated protein, paxillin. In this report we show that the tyrosine phosphorylation of FAK and paxillin are decreased during dibutyryl cyclic AMP–induced (dB‐cAMP) process formation in astrocytes. When astrocytes in suspension are treated with dB‐cAMP, no alteration in morphology or tyrosine phosphorylation is observed, suggesting that both phenomena are linked and adhesion dependent. Furthermore, genistein, a tyrosine kinase inhibitor, can induce process formation in such cells, underscoring the significance of protein tyrosine kinases in maintaining the morphology of adherent cells. Finally, endothelin‐1, a vasopeptide which is known to inhibit process formation in astrocytes, inhibited the tyrosine dephosphorylation of proteins associated with dB‐cAMP treatment. These results suggest that the formation of asymmetric processes in astrocytes results from a coordinated set of alterations in the actin cytoskeleton as well as the adhesion of the cell to the substratum. Modification of the properties of such molecules is required for process formation and the dynamic modulation of astrocytic morphology in vitro and in vivo. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 407–422, 1999  相似文献   

7.
8.
9.
10.
Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two‐component signalling systems and partner‐switching networks. We recently identified a novel regulatory protein, SypE, that combines features of both signalling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase effector domains with similarity to partner‐switching proteins. SypE was previously shown to exert dual control over biofilm formation through the opposing activities of its terminal effector domains. Here, we demonstrate that SypE controls biofilms in Vibrio fischeri by regulating the activity of SypA, a STAS (sulphate transporter and anti‐sigma antagonist) domain protein. Using biochemical and genetic approaches, we determined that SypE both phosphorylates and dephosphorylates SypA, and that phosphorylation inhibits SypA's activity. Furthermore, we found that biofilm formation and symbiotic colonization required active, unphosphorylated SypA, and thus SypA phosphorylation corresponded with a loss of biofilms and impaired host colonization. Finally, expression of a non‐phosphorylatable mutant of SypA suppressed both the biofilm and symbiosis defects of a constitutively inhibitory SypE mutant strain. This study demonstrates that regulation of SypA activity by SypE is a critical mechanism by which V. fischeri controls biofilm development and symbiotic colonization.  相似文献   

11.
12.
Cell-culture studies indicate that tyrosine phosphorylation of the cadherin-catenin-complex (CCC) is one of the post-translational mechanism regulating E-cadherin-mediated cell adhesion. In this investigation, controlled application of a tyrosine phosphatase inhibitor (orthovanadate) and tyrosine kinase inhibitor (tyrphostin) to early Drosophila embryos, followed by biochemical assays and phenotypic analysis, has been utilized to address the mechanism by which tyrosine phosphorylation regulates E-cadherin-mediated cell adhesion in vivo. Our data suggest that, in the Drosophila embryo, β-catenin (Drosophila homolog Armadillo) is the primary tyrosine-phosphorylated protein in the CCC. The increase in tyrosine phosphorylation correlates with a loss of epithelial integrity and adherens junctions in the ectoderm of early embryos. Late application of the phosphatase inhibitor does not have this effect, presumably because of the formation of septate junctions in late embryos. Co-immunoprecipitation assays have demonstrated that tyrosine hyper-phosphorylation does not cause the dissociation of Drosophila (D)E-cadherin and α-catenin or Armadillo, suggesting that abrogation in adhesion is most likely attributable to the detachment of actin-associated proteins from the CCC. Finally, although the Drosophila epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is linked to the CCC and shows genetic interactions with DE-cadherin, we find that a constitutively active Drosophila EGFR construct does not cause any detectable changes in the level of tyrosine phosphorylation of Armadillo or destabilization of the CCC. This work was supported by UCLA USPHS National Research Service Award GM07185 to F.W., and NIH Grant NS 29367 to V.H.  相似文献   

13.
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix‐producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft‐specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal‐localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.  相似文献   

14.
15.
Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system PtkA/PtpZ was previously shown to regulate the phosphorylation state of UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. This promiscuity towards substrates is reminiscent of eukaryal kinases and has prompted us to investigate possible physiological effects of ptkA and ptpZ gene inactivations in this study. We were unable to identify any striking phenotypes related to control of UDP-glucose dehydrogenases, natural competence and DNA lesion repair; however, a very strong phenotype of DeltaptkA emerged with respect to DNA replication and cell cycle control, as revealed by flow cytometry and fluorescent microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period.  相似文献   

16.
17.
Quorum sensing, a bacterial cell–cell communication process, controls biofilm formation and virulence factor production in Vibrio cholerae, a human pathogen that causes the disease cholera. The major V. cholerae autoinducer is (S)‐3‐hydroxytridecan‐4‐one (CAI‐1). A membrane bound two‐component sensor histidine kinase called CqsS detects CAI‐1, and the CqsS → LuxU → LuxO phosphorelay cascade transduces the information encoded in CAI‐1 into the cell. Because the CAI‐1 ligand is known and because the signalling circuit is simple, consisting of only three proteins, this system is ideal for analysing ligand regulation of a sensor histidine kinase. Here we reconstitute the CqsS → LuxU → LuxO phosphorylation cascade in vitro. We find that CAI‐1 inhibits the initial auto‐phosphorylation of CqsS whereas subsequent phosphotransfer steps and CqsS phosphatase activity are not CAI‐1‐controlled. CAI‐1 binding to CqsS causes a conformational change that renders His194 in CqsS inaccessible to the CqsS catalytic domain. CqsS mutants with altered ligand detection specificities are faithfully controlled by their corresponding modified ligands in vitro. Likewise, pairing of agonists and antagonists allows in vitro assessment of their opposing activities. Our data are consistent with a two‐state model for ligand control of histidine kinases.  相似文献   

18.
19.
Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号