首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The systematics of the Prasiolales was investigated by phylogenetic inference based on analyses of the rbcL and 18S rRNA genes for representatives of all four genera currently attributed to this order (Prasiococcus, Prasiola, Prasiolopsis, Rosenvingiella), including all type species. The rbcL gene had higher sequence divergence than the 18S rRNA gene and was more useful for phylogenetic inference at the ranks of genus and species. In the rbcL gene phylogeny, three main clades were observed, corresponding to Prasiola, Prasiolopsis, and Rosenvingiella. Prasiococcus was nested among species of Prasiola occurring in subaerial and supralittoral habitats. Trichophilus welckeri Weber Bosse, a subaerial alga occurring in the fur of sloths in Amazonia, was closely related to Prasiolopsis ramosa Vischer. The species of Prasiola were grouped into three well‐supported clades comprising (i) marine species, (ii) freshwater and terrestrial species with linear blades, and (iii) terrestrial species with rounded or fan‐shaped blades. Sequence divergence was unexpectedly low in the marine group, which included species with different morphologies. For the 18S rRNA gene, the phylogenetic analyses produced several clades observed for the rbcL gene sequence analysis, but, due to very little sequence variation, it showed considerably lower resolution for inference at the species and genus levels. Due to the low support of some internal branches, the results of the analyses did not allow an unambiguous clarification of the origin and the early evolution of the Prasiolales.  相似文献   

2.
《Systematic Entomology》2018,43(1):136-146
Phylogenetic analyses and species delimitation methods are powerful tools for understanding patterns of species diversity. Given the current biodiversity crisis, such approaches are invaluable for urgent assessment and delimitation of truthful species, particularly of endangered and morphologically cryptic taxa from vulnerable areas submitted to strong climate change and progressive human intervention such as the M editerranean region. In this study, we applied two DNA ‐based species delimitation methods and performed a B ayesian phylogenetic reconstruction using three mitochondrial gene fragments (12S , 16S and COI) to solve several taxonomic uncertainties among species of cross‐backed grasshoppers (genus Dociostaurus F ieber) from the western M editerranean. P hylogenetic analyses demonstrate the polyphyletic character of subgenera Dociostaurus , Kazakia B ey‐B ienko and Stauronotulus T arbinsky and, thus, the necessity of revising the currently accepted taxonomic subgenera within the genus Dociostaurus . We propose the split of closely related taxa with allopatric distributions such as D. (S.) kraussi and D. (S.) crassiusculus , considering the later a distinct species limited to the I berian P eninsula and excluding the name crassiusculus from other forms of D. (S.) kraussi from E ast E urope and A sia. Estimates of divergence times indicate that diversification of Dociostaurus probably happened during the M iocene–P liocene (3–7 Ma), and the split of the studied pairs of sister taxa took place during the middle and late P leistocene (1–2 Ma). This study highlights the need for more molecular studies on the genus and their different species for a better understanding of their evolution, genetic variation and population dynamics in order to prioritize strategies for their adequate conservation and management.  相似文献   

3.
The fish genus Poeciliopsis constitutes a valuable research system for evolutionary ecology, whose phylogenetic relationships have not been fully elucidated. We conducted a multilocus phylogenetic study of the genus based on seven nuclear and two mitochondrial loci with a thorough set of analytical approaches, that is, concatenated (also known as super‐matrix), species trees, and phylogenetic networks. Although several relationships remain unresolved, the overall results uncovered phylogenetic affinities among several members of this genus. A population previously considered of undetermined taxonomic status could be unequivocally assigned to P. scarlli; revealing a relatively recent dispersal event across the Trans‐Mexican Volcanic Belt (TMVB) or Pacific Ocean, which constitute a strong barrier to north–south dispersal of many terrestrial and freshwater taxa. The closest relatives of P. balsas, a species distributed south of the TMVB, are distributed in the north; representing an additional north–south split in the genus. An undescribed species of Poeciliopsis, with a highly restricted distribution (i.e., a short stretch of the Rio Concepcion; just south of the US‐Mexico border), falls within the Leptorhaphis species complex. Our results are inconsistent with the hypothesis that this species originated by “breakdown” of an asexual hybrid lineage. On the other hand, network analyses suggest one or more possible cases of reticulation within the genus that require further evaluation with genome‐wide marker representation and additional analytical tools. The most strongly supported case of reticulation occurred within the subgenus Aulophallus (restricted to Central America), and implies a hybrid origin for P. retropinna (i.e., between P. paucimaculata and P. elongata). We consider that P. balsas and P. new species are of conservation concern.  相似文献   

4.
We studied the morphology and molecular phylogeny of Myoschiston duplicatum, a peritrich ciliate that has been recorded as an epibiont of crustaceans, but which we also identified on marine algae from Korea. The important morphological characteristics revealed by silver staining of Myoschiston species have not been described because they are rarely collected. Using morphological methods, we redescribed the type species of the genus, Myoschiston duplicatum, and provided an improved diagnosis of Myoschiston. In addition, the coding regions for nuclear small subunit (SSU) rRNA and internal transcribed spacer 1‐5.8S‐internal transcribed spacer 2 sequences were sequenced. Phylogenetic analyses that included available SSU rDNA sequences of peritrichs from GenBank strongly supported a position of M. duplicatum within the family Zoothamniidae. In addition, phylogenetic analyses were performed with single datasets (ITS1‐5.8S‐ITS2) and combined datasets (SSU rDNA + ITS1‐5.8S‐ITS2) to explore further the phylogenetic relationship in the family Zoothamniidae between the three morphologically similar genera—Zoothamnium, Myoschiston, and Zoothamnopsis.  相似文献   

5.
Jeon, M.‐J., Song, J.‐H. & Ahn, K.‐J. (2012). Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. —Zoologica Scripta, 41, 150–159. A phylogenetic analysis of the marine littoral genus Cafius Stephens is presented based on molecular characters. The data set comprised partial mitochondrial COI (910 bp), COII (369 bp), 12S rDNA (351–354 bp), 16S rDNA (505–509 bp) and nearly complete sequences of 18S rDNA (1814–1830 bp) for 37 species. Twenty‐seven Cafius species, representing five of six subgenera, two Remus Holme species, three Phucobius Sharp species, monotypic Thinocafius Steel and four outgroups were included. The sequences were analysed simultaneously by parsimony analysis in Tree Analysis Using New Technology (TNT) with traditional manual alignment, direct optimization (DO) in the program POY4 under a variety of gap costs and partitioned Bayesian analysis for the combined data. The genus Cafius and nearly all of its subgenera were not supported as being monophyletic. Instead, all analyses (parsimony trees, DO tree under equal weighting and Bayesian tree) showed monophyly of Cafius + Phucobius + Remus + Thinocafius (clade Z) and all seven nested clades (A–G). However, the phylogenetic relationships among clades A–G differed among the analyses. The genus Phucobius was recovered as a monophyletic group within Cafius. The genus Remus was not monophyletic but formed a clade with C. rufescens Sharp and C. rufifrons Bierig within Cafius. The genus Thinocafius formed a clade with C. caviceps Broun, C. litoreus (Broun) and C. quadriimpressus (White) within Cafius. We propose new concepts for the genus Cafius and its related genera, and the seven nested clades.  相似文献   

6.
Polygonatum is the largest and most complex genus in tribe Polygonateae, comprising approximately 57 species widely distributed in the warm temperate, subtropical and boreal zones of the Northern Hemisphere. However, phylogenetic relationships in the genus remain poorly understood. The objectives of this study were to reconstruct the phylogenetic relationships of the genus using four plastid markers, and to examine the evolution of leaf arrangement in Polygonatum in the phylogenetic context of its closely related taxa. Thirty Polygonatum species were sampled to infer phylogenetic relationships using maximum‐likelihood and Bayesian analyses. The evolution of leaf arrangements was reconstructed using Bayesian, parsimony and likelihood methods. The phylogenetic analyses supported the current generic delimitation of Polygonatum, with Heteropolygonatum recognized as a distinct genus. Three major lineages in Polygonatum were well supported, largely correlated with geographical distribution and the most recent classification at the sectional level. However, our results did not support the currently recognized series, especially the two large series Verticillata and Alternifolia. Bayesian analyses support the alternate‐leaf arrangement as the ancestral state for Polygonatum, but parsimony and maximum‐likelihood analyses suggest an equivocal state for crown Polygonatum. Leaf arrangement was found to be evolutionarily labile. A new nomenclatural combination was made: P olygonatum section S ibirica (L.I.Abramova) Y.Meng, comb. nov. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 435–451.  相似文献   

7.
Abstract

DNA sequence data have been widely used to evaluate species delimitations and examine infraspecific relationships. However, species placements inferred from different nucleotide sequences are frequently in conflict. As an example of plant species placement based on nucleotide sequences, the phylogenetic placement of Dipteronia dyerana Henry (Aceraceae) was analyzed in the present study. The study species included eight Acer species (from different sections of Acer), two Dipteronia species, and two outgroup taxa. Phylogenetic trees based on five datasets (ITS, trnL‐F, trnD‐trnT, psbM‐trnD, and rpl16 regions) as well as their combined datasets were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Further analyses were conducted to compare the strict consensus trees based on single regions and the combination of different regions. The results revealed a significant discrepancy among the phylogenetic placements of D. dyerana, inferred from various sequences. Phylogenetic trees using MP analysis based on trnD‐trnT, rpl16, and the four chloroplast combined sequences supported the genus Dipteronia as a monophyletic group, while in the other trees D. dyerana was positioned either in parallel with D. sinensis and Acer species or within the genus Acer. In ML analysis, only rpl16 and the four chloroplast combined sequence datasets supported the genus Dipteronia as a monophyletic group. We concluded that, although significant genetic differentiation occurred between D. dyerana and D. sinensis, D. dyerana was more advanced than D. sinensis. However, whether Dipteronia is monophyletic remains to be further investigated, e.g., by using more closely related taxa and more sequences. Furthermore, in addition to internal transcribed spacer sequences, more chloroplast gene sequences should be used for phylogenetic analyses of species.  相似文献   

8.
In this study, we used sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and 16S rRNA, and one nuclear gene, 28S rRNA, to test the monophyly of the sea star genus Echinaster, and understand the phylogenetic relationships among species and subgenera within this genus. Phylogenetic analyses based on Bayesian inference and maximum likelihood methods revealed three clades with high values of genetic divergence among them (K2P distances for COI over 23%). One of the clades grouped all Echinaster (Othilia) species, and the other two clades included Echinaster (non‐Othilia) species and Henricia species, respectively. Although the relationships among Henricia, Othilia, and Echinaster could not be completely clarified, the Othilia clade was a well‐supported group with shared diagnostic morphological characters. Moreover, the approximately unbiased test applied to the phylogenetic reconstruction rejected the hypothesis of the genus Echinaster as a monophyletic group. According to these results, we suggest the revalidation of Othilia as a genus instead of a subgenus within Echinaster. Our study clarifies important points about the phylogenetic relationships among species of Echinaster. Other important systematic questions about the taxonomic classification of Echinaster and Henricia still remain open, but this molecular study provides bases for future research on the topic.  相似文献   

9.
10.
Zhang, Q., Miao, M., Strüder‐Kypke, M. C., Al‐Rasheid, K. A. S., Al‐Farraj, S. A. & Song, W. (2011). Molecular evolution of Cinetochilum and Sathrophilus (Protozoa, Ciliophora, Oligohymenophorea), two genera of ciliates with morphological affinities to scuticociliates. —Zoologica Scripta, 40, 317–325. The ciliate order Loxocephalida sensu Li et al. (2006) has been considered to be systematically uncertain within the subclass Scuticociliatia. Loxocephalids display mixed morphological features and morphogenetic patterns that are found in two different oligohymenophorean subclasses: scuticociliates and hymenostomes. To reveal their phylogenetic positions, molecular information on this group is urgently needed but still inadequate. In the present study, we have sequenced the small subunit rRNA gene of two newly described loxocephalids, Cinetochilum ovale Gong & Song 2008; and Sathrophilus planus Fan et al. 2010; which have never been discussed based on molecular analysis. Results show: (i) all phylogenetic trees are nearly identical in placing Cinetochilum closest to the subclass Apostomatia and form a monophyletic group divergent from the typical scuticociliates, (ii) the genus Sathrophilus, together with Anoplophrya, a poorly known Astomatia, forms a peripheral branch separated from the scuticociliatian assemblage and (iii) the affiliation of the loxocephalid genera sensu Li et al. (2006) is not confirmed due to a dispersion in four deeply diverged clades. In addition, the polyphyly of the genus Cyclidium, shown in previous studies, is confirmed by our phylogenetic analyses and supported by the approximately unbiased test based on the new database in this work.  相似文献   

11.
Oceguera‐Figueroa, A., Phillips, A. J., Pacheco‐Chaves, B., Reeves, W. K. & Siddall, M. E. (2010). Phylogeny of macrophagous leeches (Hirudinea, Clitellata) based on molecular data and evaluation of the barcoding locus. —Zoologica Scripta, 40, 194–203. The phylogenetic relationships of macrophagous leech species are studied using two mitochondrial [cytochrome c oxidase subunit I (COI) and 12S rDNA] and two nuclear (28S rDNA and 18S rDNA) markers. The complete dataset analysed in this study included 49 terminals and 5540 aligned characters. Phylogenetic analyses were performed under two optimality criteria: Maximum Parsimony and Maximum Likelihood. The monophyly of the two currently recognized families (i.e. Erpobdellidae and Salifidae) is confirmed and well supported. The phylogenetic position of Gastrostomobdellidea is studied for the first time and found to be sister to family Salifidae nested well within Erpobdelliformes. Previously recognized taxonomic arrangements were evaluated and discarded through successive constraint analyses. Correlation between morphology and phylogeny was notable in Salifidae but not in Erpobdellidae. Variability of COI, the barcoding locus, was examined across species leading to the recognition of the invasive Barbronia weberi in Mexico, Costa Rica, Germany, South Africa and Taiwan.  相似文献   

12.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

13.
Haukisalmi, V., Wickström, L. M., Henttonen, H., Hantula, J. & Gubányi, A. (2004). Molecular and morphological evidence for multiple species within Paranoplocephala omphalodes (Cestoda, Anoplocephalidae) in Microtus voles (Arvicolinae). —Zoologica Scripta, 33, 277–290. The present study was designed to test the hypothesis that the anoplocephalid cestode Paranoplocephala omphalodes (Hermann, 1783), a Holarctic parasite of Microtus voles, is a complex of host‐specific species, rather than a single host‐generalist species, using uni‐ and multivariate morphometrics and DNA sequence data from the mitochondrial cytochrome oxidase I gene. The phylogenetic methods applied to the mtDNA sequence data showed consistently that the cestodes morphologically recognizable as P. omphalodes include four well‐supported monophyletic groups, representing at least three distinct, largely host‐specific species. Multivariate morphometrics (discriminant analysis) successfully distinguished the four main mtDNA clades of P. omphalodes‐like cestodes. The true P. omphalodes is shown to be a parasite of Microtus arvalis, M. agrestis and Clethrionomys glareolus in Europe. Microtus oeconomus harbours two host‐specific, allopatric and possibly conspecific clades, one with a Holarctic and another with an (eastern) Beringian (Alaskan) distribution. The eastern Beringian endemic M. miurus is also parasitized with a host‐specific, morphologically divergent species of Paranoplocephala. The cestode clades recognized in M. oeconomus and M. miurus represent 2–3 undescribed species. Molecular phylogenetic analyses supported the monophyly of the ‘northern clade’ of Paranoplocephala spp., an assemblage including P. kalelai from Clethrionomys spp., P. macrocephala from Microtus spp. and all clades of P. omphalodes‐like cestodes except those representing the true P. omphalodes from Europe. The intra‐ and interspecific phylogeny within the northern clade is compared tentatively with the known evolutionary history of the hosts.  相似文献   

14.
Carrasco, P.A., Mattoni, C.I., Leynaud, G.C. & Scrocchi, G.J. (2012). Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). —Zoologica Scripta, 41, 109–124. South American bothropoids comprise a monophyletic and greatly diverse group of pitvipers that were initially included in the genus Bothrops and later assigned to five genera. Until recently, most phylogenetic analyses of bothropoids used exclusively mitochondrial DNA sequences, whereas few of them have included morphological traits. Moreover, the systematic affinities of some species remain unclear. In this study, we performed a parsimony analysis of morphological data obtained from the examination of 111 characters related to lepidosis, colour pattern, osteology, and hemipenial morphology of 35 of the 48 species that compose the bothropoid group. The morphological data analysed contain novel information about several species, including the incertae sedis. Morphology was analysed separately and combined with 2393 molecular characters obtained from published sequences of four mitochondrial genes. Five characters of the ecology were also included. A sensitivity analysis was performed using different weighting criteria for the characters. The congruence among different sources of evidence was evaluated through partitioned and total evidence analyses, the analyses of reduced datasets and the use of incongruence length difference test. With few exceptions, results showed groups of species similar to those obtained in previous studies; however, incongruences between morphological and molecular characters, and within the molecular partition, were revealed. This conflict affects the relationship between particular groups of species, leading to alternative phylogenetic hypotheses for bothropoids: hierarchical radiation or two major lineages within the group. The results also showed that Bothrops sensu stricto is paraphyletic. We discuss previous taxonomic approaches and, considering both phylogenetic hypotheses, we propose an arrangement that rectifies the paraphyly of Bothrops: maintaining Bothrocophias, assigning Bothrops andianus to this genus; and recognising the sister clade as Bothrops, synonymising Bothriopsis, Bothropoides and Rhinocerophis.  相似文献   

15.
The broadly defined genus Chaetophora consisted of species with minute, uniseriate branching filaments enveloped in soft or firm mucilage forming macroscopic growths that are spherical, hemispherical, and tubercular or arbuscular, growing epiphytically on freshwater aquatic plants and other submerged surfaces in standing or fast‐flowing water. Recent molecular analyses clearly showed that this genus was polyphyletic. In this study, eight strains of Chaetophora and three strains of Stigeoclonium were identified and successfully cultured. In combination with the morphological data, a concatenated data set of four markers (18S + 5.8S + ITS2+ partial 28S rDNA) was also used to determine their taxonomic relationships and phylogenetic positions. The molecular analysis resolved the broadly defined Chaetophora to at least two genera. Species with a globose thallus of genus Chaetophora formed a separate monophyletic clade, which clearly separated from, a type of lobe‐form Chaetophora species. Therefore, we propose to erect a new genus, Chaetophoropsis, which includes all globose species of the Chaetophora. Chaetophoropsis aershanensis was determined to be a new species, based on its special characteristic of profuse long rhizoids. Stigeoclonium polyrhizum, as the closest relative to Chaetophoropsis, revealed its distant relationships to other species of Stigeoclonium. A globose thallus with a thick, soft mucilage matrix, and special rhizoidal branches lent further support to the placement of S. polyrhizum in the genus Chaetophoropsis and had the closest relationship to C. aershanensis. Taxonomic diversity was proven by distinctive morphological differences and by phylogenetic divergence in the broadly defined Chaetophora identified herein.  相似文献   

16.
The commercial deep‐sea penaeid shrimp genus Parapenaeus contains 15 species, three subspecies and two forms in the Indo‐West Pacific and the Atlantic. Novel nucleotide sequence data from five different genes (COI, 16S, 12S, NaK and PEPCK) were collected to estimate phylogenetic relationships and taxonomic status amongst all but one subspecies in this genus. The phylogenetic results only support two of the four species groups previously proposed for this genus and indicate an evolution direction of the genital organs from simple to complex. The present results suggest that Parapenaeus originated in the shallow waters of the West Pacific with subsequent migration to the deep sea and the Atlantic. The molecular data reveal that there was probably misidentification of females between Parapenaeus australiensis and Parapenaeus ruberoculatus, with females previously assigned as P. australiensis likely being the females of P. ruberoculatus, while material identified as P. australiensis forma nodosa being the true P. australiensis females. On the other hand, Parapenaeus longipes forma denticulata truly represents a variation of the same species, while the subspecies Parapenaeus fissuroides indicus warrants a specific rank.  相似文献   

17.
Family Polycopidae is one of the more abundant and diverse taxa occurring in marine interstitial environments. Most of the interstitial polycopids are so far known from Japan and belong to the genus Parapolycope Klie, 1936. In this paper we describe another four new species from Japan. A new genus, K liecope gen. nov. is erected to include one new species K liecope mihoensis sp. nov. and one new combination Kliecope oligohalina (Tanaka & Tsukagoshi, 2010) comb. nov. Although the morphology of K liecope is similar to Parapolycope, the new genus has the following diagnostic characters: absence of an inward bulge on the antennular second podomere, presence of two setae bearing a sucker on the antennular third podomere, and absence of a dorsal seta on the basis of mandibula. Another three Parapolycope, P arapolycope setouchiensis sp. nov. , P arapolycope subtidalis sp. nov. , and P arapolycope miurensis sp. nov. are described as well. To test the phylogenetic relationship between the new genus and Parapolycope, we performed phylogenetic analyses based on the 14 18S rDNA sequences of interstitial Polycopidae species, 12 of which were newly obtained from our material. The 18S gene proved to be suitable for phylogenetic analyses in polycopids with high intraspecific or intrageneric resolution. Here we present trees obtained with maximum likelihood, maximum parsimony, and neighbour‐joining methods, and they support the divergence between Kliecope and Parapolycope with high bootstrap values. © 2014 The Linnean Society of London  相似文献   

18.
19.
We used phylogenetic analyses based on multiple gene sequences (partial nr SSU and LSU rDNA, partial pt LSU rDNA, psaA and rbcL) from 148 strains (including three outgroups) and scale ultrastructure to examine phylogenetic relationships among species of the colonial genera Synura and Tessellaria. The phylogenetic tree based on the combined dataset was congruent with ultrastructural characteristics of the scales. Synura was divided into three major clades, two including species in section Synura, and one representing section Peterseniae. One clade, consisting of seven strains of S. uvella (section Synura), diverged at the base of the genus. The second clade consisted of the remaining species belonging to the section Synura. The third clade, containing organisms in the section Peterseniae and characterized by scales possessing a keel, was monophyletic with strong support values. Based on our findings, S. uvella needs to be in a separate section from other spine-bearing species, and we therefore propose new sectional ranks; Synura, Peterseniae, Curtispinae (presence of body scales with slender spines, tubular scales and caudal scales). We further propose four new species based on phylogenetic analyses and unique scale characters: S. longitubularis sp. nov., S. sungminbooi sp. nov., S. soroconopea sp. nov. and S. lanceolata sp. nov. Lastly, we propose a new genus name, Neotessella, to replace the invalid use of the name Tessellaria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号