首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

2.
Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan–algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co‐evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan‐algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host‐symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.  相似文献   

3.
Vertically transmitted microbes are common in macro‐organisms and can enhance host defense against environmental stress. Because vertical transmission couples host and symbiont lineages, symbionts may become specialized to host species or genotypes. Specialization and contrasting reproductive modes of symbiotic partners could create incompatibilities between inherited symbionts and novel host genotypes when hosts outcross or hybridize. Such incompatibilities could manifest as failed colonization or poor symbiont growth in host offspring that are genetically dissimilar from their maternal host. Moreover, outcrossing between host species could influence both host and symbiont reproductive performance. We tested these hypotheses by manipulating outcrossing between populations and species of two grasses, Elymus virginicus and E. canadensis, that host vertically transmitted fungal endophytes (genus Epichloё). In both greenhouse and field settings, we found that host–symbiont compatibility was robust to variation in host genetic background, spanning within‐population, between‐population and between‐species crosses. Symbiont transmission into the F1 generation was generally high and weakly affected by host outcrossing. Furthermore, endophytes grew equally well in planta regardless of host genetic background and transmitted at high frequencies into the F2 generation. However, outcrossing, especially inter‐specific hybridization, reduced reproductive fitness of the host, and thereby the symbiont. Our results challenge the hypothesis that host genetic recombination, which typically exceeds that of symbionts, is a disruptive force in heritable symbioses. Instead, symbionts may be sufficiently generalized to tolerate ecologically realistic variation in host outcrossing.  相似文献   

4.
Heritable genetic variation is required for evolution, and while typically encoded within nuclear and organellar genomes, several groups of invertebrates harbour heritable microbes serving as additional sources of genetic variation. Hailing from the symbiont‐rich insect order Hemiptera, pea aphids (Acyrthosiphon pisum) possess several heritable symbionts with roles in host plant utilization, thermotolerance and protection against natural enemies. As pea aphids vary in the numbers and types of harboured symbionts, these bacteria provide heritable and functionally important variation within field populations. In this study, we quantified the cytoplasmically inherited genetic variation contributed by symbionts within North American pea aphids. Through the use of Denaturing Gradient Gel Electrophoresis (DGGE) and 454 amplicon pyrosequencing of 16S rRNA genes, we explored the diversity of bacteria harboured by pea aphids from five populations, spanning three locations and three host plants. We also characterized strain variation by analysing 16S rRNA, housekeeping and symbiont‐associated bacteriophage genes. Our results identified eight species of facultative symbionts, which often varied in frequency between locations and host plants. We detected 28 cytoplasmic genotypes across 318 surveyed aphids, considering only the various combinations of secondary symbiont species infecting single hosts. Yet the detection of multiple Regiella insecticola, Hamiltonella defensa and Rickettsia strains, and diverse bacteriophage genotypes from H. defensa, suggest even greater diversity. Combined, these findings reveal that heritable bacteria contribute substantially to genetic variation in A. pisum. Given the costs and benefits of these symbionts, it is likely that fluctuating selective forces play a role in the maintenance of this diversity.  相似文献   

5.
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus‐growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag‐encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free‐living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co‐infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population‐level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.  相似文献   

6.
Deep‐sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co‐occur at deep‐sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome‐wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep‐sea chemosynthetic environments.  相似文献   

7.
8.
Symbiotic interactions between insects and bacteria have long fascinated ecologists. Aphids have emerged as the model system on which to study the effect of endosymbiotic bacteria on their hosts. Aphid‐symbiont interactions are ecologically interesting as aphids host multiple secondary symbionts that can provide broad benefits, such as protection against heat stress or specialist natural enemies (parasitic wasps and entomopathogenic fungi). There are nine common aphid secondary symbionts and individual aphids host on average 1–2 symbionts. A cost‐benefit trade‐off for hosting symbionts is thought to explain why not all aphids host every possible symbiont in a population. Both positive and negative associations between various symbionts occur, and this could happen due to increased costs when cohosting certain combinations or as a consequence of competitive interactions between the symbionts within a host. In this issue of Molecular Ecology, Mathé‐Hubert, Kaech, Hertaeg, Jaenike, and Vorburger (2019) use data on the symbiont status of field‐collected aphids to inform a model on the evolution of symbiont co‐occurrence. They vary the effective female population size as well as the rate of horizontal and maternal transmission to infer the relative impact of symbiont‐symbiont interactions versus random drift. Additional data analysis revisits an association between two symbionts in a fruit fly species using a long‐term data set to highlight that such interactions are not limited to aphids.  相似文献   

9.
Many insects harbour facultative endosymbiotic bacteria, often more than one type at a time. These symbionts can have major effects on their hosts' biology, which may be modulated by the presence of other symbiont species and by the host's genetic background. We investigated these effects by transferring two sets of facultative endosymbionts (one Hamiltonella and Rickettsia, the other Hamiltonella and Spiroplasma) from naturally double‐infected pea aphid hosts into five novel host genotypes of two aphid species. The symbionts were transferred either together or separately. We then measured aphid fecundity and susceptibility to an entomopathogenic fungus. The pathogen‐protective phenotype conferred by the symbionts Rickettsia and Spiroplasma varied among host genotypes, but was not influenced by co‐infection with Hamiltonella. Fecundity varied across single and double infections and between symbiont types, aphid genotypes and species. Some host genotypes benefit from harbouring more than one symbiont type.  相似文献   

10.
The maternally heritable endosymbiont provides many ecosystem functions. Antibiotic elimination of a specific symbiont and establishment of experimental host lines lacking certain symbionts enable the roles of a given symbiont to be explored. The whitefly Bemisia tabaci (Gennadius) in China harbors obligate symbiont Portiera infecting each individual, as well as facultative symbionts, such as Hamiltonella, Rickettsia and Cardinium, with co‐infections occurring relatively frequently. So far no studies have evaluated the selectivity and efficacy of a specific symbiont elimination using antibiotics in whiteflies co‐infected with different symbionts. Furthermore, no success has been achieved in establishing certain symbiont‐free B. tabaci lines. In this study, we treated Hamiltonella‐infected B. tabaci line, HamiltonellaRickettsia‐co‐infected line and HamiltonellaCardinium co‐infected line by feeding B. tabaci adults with cotton plants cultured in water containing rifampicin, ampicillin or a mixture of them, aiming to selectively curing symbiont infections and establishing stable symbiont‐free lines. We found ampicillin selectively eliminated Cardinium without affecting Portiera, Hamiltonella and Rickettsia, although they coexisted in the same host body. Meanwhile, all of the symbionts considered in our study can be removed by rifampicin. The reduction of facultative symbionts occurred at a much quicker pace than obligate symbiont Portiera during rifampicin treatment. Also, we measured the stability of symbiont elimination in whitefly successive generations and established Rickettsia‐infected and Cardinium‐infected lines which are absent in natural populations. Our results provide new protocols for selective elimination of symbionts co‐existing in a host and establishment of different symbiont‐infected host lines.  相似文献   

11.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

12.
The Ambrosia gall midge [Asteromyia carbonifera (Osten Sacken) (Diptera: Cecidomyiidae: Alycaulini)] consists, in part, of a complex of genetically differentiated populations that have diverged in gall morphology on the host plant Solidago altissima L. (Asteraceae). This divergence appears to be an incipient adaptive radiation that may be driven by parasitoid pressure. Understanding the mechanisms driving this genetic and phenotypic diversification requires a close examination of the relationship between the midge and its fungal associate Botryosphaeria dothidea (Moug.) Ces. & De Not. (Ascomycota: Dothideomycetes), whose mycelia actually form the protective gall structure. We used manipulative experiments to test the degree of interdependency of the fungus and the midge, and we employed field and laboratory studies to gain insight into the source of fungal conidia, which our data and observations indicate are collected by females and stored in specialized pockets (mycangia) on the ovipositor. Manipulative experiments demonstrate that fungal proliferation on the host plant is dependent on the midge larvae and larvae exhibit significant growth on the fungus alone. Field observations and experiments were unable to identify the source of mycangial conidia; however, analyses of conidia shape suggest a biotrophic source. We conclude that this association is an obligatory mutualism with respect to successful gall formation. These findings corroborate recent findings that the primary food source of the midge is the gall fungus.  相似文献   

13.
Range expansion results from complex eco‐evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free‐living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche‐driven and dispersal‐driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host‐mediated dispersal, although the requirement for among‐host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off‐host environmental gradients during host‐mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.  相似文献   

14.
Host control mechanisms are thought to be critical for selecting against cheater mutants in symbiont populations. Here, we provide the first experimental test of a legume host’s ability to constrain the infection and proliferation of a native‐occurring rhizobial cheater. Lotus strigosus hosts were experimentally inoculated with pairs of Bradyrhizobium strains that naturally vary in symbiotic benefit, including a cheater strain that proliferates in the roots of singly infected hosts, yet provides zero growth benefits. Within co‐infected hosts, the cheater exhibited lower infection rates than competing beneficial strains and grew to smaller population sizes within those nodules. In vitro assays revealed that infection‐rate differences among competing strains were not caused by variation in rhizobial growth rate or interstrain toxicity. These results can explain how a rapidly growing cheater symbiont – that exhibits a massive fitness advantage in single infections – can be prevented from sweeping through a beneficial population of symbionts.  相似文献   

15.
Symbiotic bacteria are highly diverse, play an important role in ecology and evolution, and are also of applied relevance because many pest insects rely on them for their success. However, the dynamics and regulation of symbiotic bacteria within hosts is complex and still poorly understood outside of a few model systems. One of the most intriguing symbiotic relationships is the obligate, tripartite nutritional mutualism in sap‐feeding, economically‐destructive mealybugs (Hemiptera: Sternorrhyncha: Pseudococcidae), which involves γ‐proteobacteria hosted within β‐proteobacteria hosted within the mealybugs. The present study examines whether there is population variation in symbiont density (i.e. infection intensity, or titre) in the citrus mealybug Planococcus citri (Risso) and how this impacts host life‐history. Symbiont density is found to differ significantly between populations when reared under controlled environmental conditions, indicating that the density of symbiont infections is influenced by host or symbiont genotype. However, symbiont density changes in populations over multiple generations, indicating that symbiont densities are dynamic. Surprisingly, given that the symbionts are essential nutritional mutualists, the density of the symbionts does not correlate significantly with either host fecundity or development. Higher levels of symbionts have no clear benefit to hosts and therefore appear to be superfluous, at least under constant, optimized environmental conditions. Excessive symbiont density may be an evolutionary artefact from a period of inefficient vertical transmission when the balance of conflict between host and symbiont was still being established.  相似文献   

16.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

17.
1. Oviposition preferences of herbivorous insects are predicted to match offspring performance on different host taxa or on conspecific host genotypes. In gall‐inducing insects, host‐plant properties such as growth rate and gall size, which are determined by plant genotype and growing conditions, may have a significant impact on offspring performance and, hence, should influence oviposition site selection. 2. The present study investigated host preference of the European rosette willow gall midge Rabdophaga rosaria (Loew) in relation to offspring success on seven clones of Salix myrsinifolia Salisb. and two naturally hybridised S. myrsinifolia × phylicifolia L. clones growing in a replicated design in an experimental field under two fertilisation regimes. For each clone, the average growth rate, number of shoot tips, and leaf and gall size were determined, and their effects on midge preference and larval survival were examined. 3. Main shoot height, number of shoot tips, and gall size were significantly affected by clone. The midges clearly preferred certain clones over the others, but preferences were not related to willow growth traits or to gall size. Survival probability was higher in large than in small galls, but females did not prefer large‐leaved clones that produced the biggest rosette galls. Midge oviposition was also uncorrelated with prior rates of leaf‐rust infection and with feeding preferences of voles and folivorous insects. 4. The weak preference–performance relationship of R. rosaria within S. myrsinifolia is probably explained by evolutionary constraints that prevent generalist insects from achieving an ability to discriminate among conspecific hosts of variable quality.  相似文献   

18.
The diversity of symbionts (commensals, mutualists or parasites) that share the same host species may depend on opportunities and constraints on host exploitation associated with host phenotype or environment. Various host traits may differently influence host accessibility and within‐host population growth of each symbiont species, or they may determine the outcome of within‐host interactions among coexisting species. In turn, phenotypic diversity of a host species may promote divergent exploitation strategies among its symbiotic organisms. We studied the distribution of two feather mite species, Proctophyllodes sylviae and Trouessartia bifurcata, among blackcaps Sylvia atricapilla wintering in southern Spain during six winters. The host population included migratory and sedentary individuals, which were unequally distributed between two habitat types (forests and shrublands). Visual mite counts showed that both mite species often coexisted on sedentary blackcaps, but were seldom found together on migratory blackcaps. Regardless of host habitat, Proctophyllodes were highly abundant and Trouessartia were scarce on migratory blackcaps, but the abundance of both mite species converged in intermediate levels on sedentary blackcaps. Coexistence may come at a cost for Proctophyllodes, whose load decreased when Trouessartia was present on the host (the opposite was not true). Proctophyllodes load was positively correlated with host wing length (wings were longer in migratory blackcaps), while Trouessartia load was positively correlated to uropygial gland size (sedentary blackcaps had bigger glands), which might render migratory and sedentary blackcaps better hosts for Proctophyllodes and Trouessartia, respectively. Our results draw a complex scenario for mite co‐existence in the same host species, where different mite species apparently take advantage of, or are constrained by, divergent host phenotypic traits. This expands our understanding of bird–mite interactions, which are usually viewed as less dynamic in relation to variation in host phenotype, and emphasizes the role of host phenotypic divergence in the diversification of symbiotic organisms.  相似文献   

19.
Symbiotic associations between microbes and insects are widespread, and it is frequent that several symbionts share the same host individual. Hence, interactions can occur between these symbionts, influencing their respective abundance within the host with consequences on its phenotype. Here, we investigate the effects of multiple infections in the pea aphid, Acyrthosiphon pisum, which is the host of an obligatory and several facultative symbionts. In particular, we study the influence of a coinfection with 2 protective symbionts: Hamiltonella defensa, which confers protection against parasitoids, and Rickettsiella viridis, which provides protection against fungal pathogens and predators. The effects of HamiltonellaRickettsiella coinfection on the respective abundance of the symbionts, host fitness and efficacy of enemy protection were studied. Asymmetrical interactions between the 2 protective symbionts have been found: when they coinfect the same aphid individuals, the Rickettsiella infection affected Hamiltonella abundance within hosts but not the Hamiltonella‐mediated protective phenotype while the Hamiltonella infection negatively influences the Rickettsiella‐mediated protective phenotype but not its abundance. Harboring the 2 protective symbionts also reduced the survival and fecundity of host individuals. Overall, this work highlights the effects of multiple infections on symbiont abundances and host traits that are likely to impact the maintenance of the symbiotic associations in natural habitats.  相似文献   

20.
Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号