首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host–parasite co‐evolution can lead to genetic differentiation among isolated host–parasite populations and local adaptation between parasites and their hosts. However, tests of local adaptation rarely consider multiple fitness‐related traits although focus on a single component of fitness can be misleading. Here, we concomitantly examined genetic structure and co‐divergence patterns of the trematode Coitocaecum parvum and its crustacean host Paracalliope fluviatilis among isolated populations using the mitochondrial cytochrome oxidase I gene (COI). We then performed experimental cross‐infections between two genetically divergent host–parasite populations. Both hosts and parasites displayed genetic differentiation among populations, although genetic structure was less pronounced in the parasite. Data also supported a co‐divergence scenario between C. parvum and P. fluviatilis potentially related to local co‐adaptation. Results from cross‐infections indicated that some parasite lineages seemed to be locally adapted to their sympatric (home) hosts in which they achieved higher infection and survival rates than in allopatric (away) amphipods. However, local, intrinsic host and parasite characteristics (host behavioural or immunological resistance to infections, parasite infectivity or growth rate) also influenced patterns of host–parasite interactions. For example, overall host vulnerability to C. parvum varied between populations, regardless of parasite origin (local vs. foreign), potentially swamping apparent local co‐adaptation effects. Furthermore, local adaptation effects seemed trait specific; different components of parasite fitness (infection and survival rates, growth) responded differently to cross‐infections. Overall, data show that genetic differentiation is not inevitably coupled with local adaptation, and that the latter must be interpreted with caution in a multi‐trait context.  相似文献   

2.
Locally adapted parasites have higher infectivity and/or fitness on sympatric than on allopatric hosts. We tested local adaptation of a holoparasitic plant, Cuscuta europaea, to its host plant, Urtica dioica. We infected hosts from five sites with holoparasites from the same five sites and measured local adaptation in terms of infectivity and parasite performance (biomass) in a reciprocal cross‐infection experiment. The virulence of the parasite did not differ between sympatric and allopatric hosts. Overall, parasites had higher infectivity on sympatric hosts but infectivity and parasite performance varied among populations. Parasites from one of the populations showed local adaptation in terms of performance, whereas parasites from one of the populations had higher infectivity on allopatric hosts compared with sympatric hosts. This among‐population variation may be explained by random variation in parasite adaptation to host populations or by time‐lagged co‐evolutionary oscillations that lead to fluctuations in the level of local adaptation.  相似文献   

3.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

4.
Many trophically transmitted parasites manipulate their intermediate host phenotype, resulting in higher transmission to the final host. However, it is not known if manipulation is a fixed adaptation of the parasite or a dynamic process upon which selection still acts. In particular, local adaptation has never been tested in manipulating parasites. In this study, using experimental infections between six populations of the acanthocephalan parasite Pomphorhynchus laevis and its amphipod host Gammarus pulex, we investigated whether a manipulative parasite may be locally adapted to its host. We compared adaptation patterns for infectivity and manipulative ability. We first found a negative effect of all parasite infections on host survival. Both parasite and host origins influenced infection success. We found a tendency for higher infectivity in sympatric versus allopatric combinations, but detailed analyses revealed significant differences for two populations only. Conversely, no pattern of local adaptation was found for behavioral manipulation, but manipulation ability varied among parasite origins. This suggests that parasites may adapt their investment in behavioral manipulation according to some of their host's characteristics. In addition, all naturally infected host populations were less sensitive to parasite manipulation compared to a naive host population, suggesting that hosts may evolve a general resistance to manipulation.  相似文献   

5.
Host-parasite coevolution is often described as a process of reciprocal adaptation and counter adaptation, driven by frequency-dependent selection. This requires that different parasite genotypes perform differently on different host genotypes. Such genotype-by-genotype interactions arise if adaptation to one host (or parasite) genotype reduces performance on others. These direct costs of adaptation can maintain genetic polymorphism and generate geographic patterns of local host or parasite adaptation. Fixation of all-resistant (or all-infective) genotypes is further prevented if adaptation trades off with other host (or parasite) life-history traits. For the host, such indirect costs of resistance refer to reduced fitness of resistant genotypes in the absence of parasites. We studied (co)evolution in experimental microcosms of several clones of the freshwater protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. After two and a half years of culture, inoculation of evolved and naive (never exposed to the parasite) hosts with evolved and founder parasites revealed an increase in host resistance, but not in parasite infectivity. A cross-infection experiment showed significant host clone-by-parasite isolate interactions, and evolved hosts tended to be more resistant to their own (local) parasites than to parasites from other hosts. Compared to naive clones, evolved host clones had lower division rates in the absence of the parasite. Thus, our study indicates de novo evolution of host resistance, associated with both direct and indirect costs. This illustrates how interactions with parasites can lead to the genetic divergence of initially identical populations.  相似文献   

6.
In spatially structured populations, host–parasite coevolutionary potential depends on the distribution of genetic variation within and among populations. Inoculation experiments using the plant, Silene latifolia, and its fungal pathogen, Microbotryum violaceum, revealed little overall differentiation in infectivity/resistance, latency or spore production among host or pathogen populations. Within populations, fungal strains had similar means, but varied in performance across plant populations. Variation in resistance among seed families indicates the potential for parasite‐mediated selection, whereas there was little evidence for local pathogen genotype × plant genotype interactions assumed by most theoretical coevolution models. Lower spore production on sympatric than allopatric hosts confirmed local fungal maladaptation already observed for infectivity. Correlations between infectivity and latency or spore production suggest a common mechanism for variation in these traits. Our results suggest low variation available to this pathogen for tracking its coevolving host. This may be caused by random drift, breeding system or migration characteristic of metapopulation dynamics.  相似文献   

7.

Background  

The dynamics of antagonistic host-parasite coevolution are believed to be crucially dependent on the rate of migration between populations. We addressed how the rate of simultaneous migration of host and parasite affected resistance and infectivity evolution of coevolving meta-populations of the bacterium Pseudomonas fluorescens and a viral parasite (bacteriophage). The increase in genetic variation resulting from small amounts of migration is expected to increase rates of adaptation of both host and parasite. However, previous studies suggest phages should benefit more from migration than bacteria; because in the absence of migration, phages are more genetically limited and have a lower evolutionary potential compared to the bacteria.  相似文献   

8.
Local adaptation is a powerful mechanism to maintain genetic diversity in subdivided populations. It counteracts the homogenizing effect of gene flow because immigrants have an inferior fitness in the new habitat. This picture may be reversed in host populations where parasites influence the success of immigrating hosts. Here we report two experiments testing whether parasite abundance and genetic background influences the success of host migration among pools in a Daphnia magna metapopulation. In 22 natural populations of D. magna, immigrant hosts were found to be on average more successful when the resident populations experienced high prevalences of a local microsporidian parasite. We then determined whether this success is due to parasitism per se, or the genetic background of the parasites. In a common garden competition experiment, we found that parasites reduced the fitness of their local hosts relatively more than the fitness of allopatric host genotypes. Our experiments are consistent with theoretical predictions based on coevolutionary host-parasite models in metapopulations. A direct consequence of the observed mechanism is an elevated effective migration rate for the host in the metapopulation.  相似文献   

9.

Background

Host-parasite coevolution can lead to local adaptation of either parasite or host if there is specificity (GxG interactions) and asymmetric evolutionary potential between host and parasite. This has been demonstrated both experimentally and in field studies, but a substantial proportion of studies fail to detect such clear-cut patterns. One explanation for this is that adaptation can be masked by counter-adaptation by the antagonist. Additionally, genetic architecture underlying the interaction is often highly complex thus preventing specific adaptive responses. Here, we have employed a reciprocal cross-infection experiment to unravel the adaptive responses of two components of fitness affecting both parties with different complexities of the underlying genetic architecture (i.e. mortality and spore load). Furthermore, our experimental coevolution of hosts (Tribolium castaneum) and parasites (Nosema whitei) included paired replicates of naive hosts from identical genetic backgrounds to allow separation between host- and parasite-specific responses.

Results

In hosts, coevolution led to higher resistance and altered resistance profiles compared to paired control lines. Host genotype × parasite genotype interactions (GH × GP) were observed for spore load (the trait of lower genetic complexity), but not for mortality. Overall parasite performance correlated with resistance of its matching host coevolution background reflecting a directional and unspecific response to strength of selection during coevolution. Despite high selective pressures exerted by the obligatory killing parasite, and host- and parasite-specific mortality profiles, no general pattern of local adaptation was observed, but one case of parasite maladaptation was consistently observed on both coevolved and control host populations. In addition, the use of replicate control host populations in the assay revealed one case of host maladaptation and one case of parasite adaptation that was masked by host counter-adaptation, suggesting the presence of complex and probably dynamically changing fitness landscapes.

Conclusions

Our results demonstrate that the use of replicate naive populations can be a useful tool to differentiate between host and parasite adaptation in complex and dynamic fitness landscapes. The absence of clear local adaptation patterns during coevolution with a sexual host showing a complex genetic architecture for resistance suggests that directional selection for generality may be more important attributes of host-parasite coevolution than commonly assumed.  相似文献   

10.
Determining the molecular basis of parasite adaptation to its host is an important component in understanding host–parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short‐ and long‐term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G‐protein and serine proteases genes, which are probably important in host–parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.  相似文献   

11.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

12.
Antagonistic co‐evolution between hosts and parasites (reciprocal selection for resistance and infectivity) is hypothesized to play an important role in host range expansion by selecting for novel infectivity alleles, but tests are lacking. Here, we determine whether experimental co‐evolution between a bacterium (Pseudomonas fluorescens SBW25) and a phage (SBW25Φ2) affects interstrain host range: the ability to infect different strains of P. fluorescens other than SBW25. We identified and tested a genetically and phenotypically diverse suite of co‐evolved phage variants of SBW25Φ2 against both sympatric and allopatric co‐evolving hosts (P. fluorescens SBW25) and a large set of other P. fluorescens strains. Although all co‐evolved phage had a greater host range than the ancestral phage and could differentially infect co‐evolved variants of P. fluorescens SBW25, none could infect any of the alternative P. fluorescens strains. Thus, parasite generalism at one genetic scale does not appear to affect generalism at other scales, suggesting fundamental genetic constraints on parasite adaptation for this virus.  相似文献   

13.
Gene flow and the genetic structure of host and parasite populations are critical to the coevolutionary process, including the conditions under which antagonistic coevolution favors sexual reproduction. Here we compare the genetic structures of different populations of a freshwater New Zealand snail (Potamopyrgus antipodarum) with its trematode parasite (Microphallus sp.) using allozyme frequency data. Allozyme variation among snail populations was found to be highly structured among lakes; but for the parasite there was little allozyme structure among lake populations, suggesting much higher levels of parasite gene flow. The overall pattern of variation was confirmed with principal component analysis, which also showed that the organization of genetic differentiation for the snail (but not the parasite) was strongly related to the geographic arrangement of lakes. Some snail populations from different sides of the Alps near mountain passes were more similar to each other than to other snail populations on the same side of the Alps. Furthermore, genetic distances among parasite populations were correlated with the genetic distances among host populations, and genetic distances among both host and parasite populations were correlated with “stepping-stone” distances among lakes. Hence, the host snail and its trematode parasite seem to be dispersing to adjacent lakes in a stepping-stone fashion, although parasite dispersal among lakes is clearly greater. High parasite gene flow should help to continuously reintroduce genetic diversity within local populations where strong selection might otherwise isolate “host races.” Parasite gene flow can thereby facilitate the coevolutionary (Red Queen) dynamics that confer an advantage to sexual reproduction by restoring lost genetic variation.  相似文献   

14.
Climate change is causing warmer and more variable temperatures as well as physical flux in natural populations, which will affect the ecology and evolution of infectious disease epidemics. Using replicate seminatural populations of a coevolving freshwater invertebrate‐parasite system (host: Daphnia magna, parasite: Pasteuria ramosa), we quantified the effects of ambient temperature and population mixing (physical flux within populations) on epidemic size and population health. Each population was seeded with an identical suite of host genotypes and dose of parasite transmission spores. Biologically reasonable increases in environmental temperature caused larger epidemics, and population mixing reduced overall epidemic size. Mixing also had a detrimental effect on host populations independent of disease. Epidemics drove parasite‐mediated selection, leading to a loss of host genetic diversity, and mixed populations experienced greater evolution due to genetic drift over the season. These findings further our understanding of how diversity loss will reduce the host populations’ capacity to respond to changes in selection, therefore stymying adaptation to further environmental change.  相似文献   

15.
In each of two reciprocal cross-infection experiments, a digenetic trematode (Microphallus sp.) was found to be significantly more infective to snails (Potamopyrgus antipodarum) from its local host populations. This gives strong evidence for local adaptation by the parasite and indicates that there is a genetic basis to the host–parasite interaction. It is suggested that the parasite should be able to track common snail genotypes within populations and, therefore, that it could be at least partially responsible for the persistence of sexual subpopulations of the snail in those populations that have both obligately sexual and obligately parthenogenetic females.  相似文献   

16.
We investigate the geographic pattern of adaptation of a fungal parasite, Colletotrichum lindemuthianum, on two host species, Phaseolus vulgaris and P. coccineus for two parasite fitness traits: infectivity (ability to attack a host individual) and aggressivity (degree of sporulation and leaf surface damage). Using a cross-inoculation experiment, we show specialization of the fungus on its host species of origin for both traits even when fungi, which originated from hosts growing in sympatry, were tested on sympatric host populations. Within the two host species, we compared infectivity and aggressivity on local versus allopatric plant-fungus combinations. We found evidence for local adaptation for the two traits on P. vulgaris but not on P. coccineus. There was no significant correlation between the degrees of local adaptation for infectivity and aggressivity, indicating that the genetic basis and the effect of selection may differ between these two traits. For the two fitness traits, a positive correlation between the degree of specialization and the degree of local adaptation was found, suggesting that specialization can be reinforced by local adaptation.  相似文献   

17.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

18.
Contrasting host and parasite population genetic structures can provide information about the population ecology of each species and the potential for local adaptation. Here, we examined the population genetic structure of the nematode Neoheligmonella granjoni at a regional scale in southeastern Senegal, using 11 microsatellite markers. Using the results previously obtained for the two main rodent species of the host community, Mastomys natalensis and Mastomys erythroleucus, we tested the hypothesis that the parasite population structure was mediated by dispersal levels of the most vagile host. The results showed similar genetic diversity levels between host and parasite populations, and consistently lower levels of genetic differentiation in N. granjoni, with the exception of one outlying locus with a high FST. The aberrant pattern at this locus was primarily due to two alleles occurring at markedly different frequencies in one locality, suggesting selection at this locus, or a closely linked one. Genetic differentiation levels and isolation by distance analyses suggested that gene flow was high and random in N. granjoni at the spatial scale examined. The correlation between pair-wise genetic differentiation levels in the parasite and its main host was consistent with the hypothesis tested. Models of local adaptation as a function of the dispersal rates of hosts and parasites suggest that opportunities for local adaptation would be low in this biological system.  相似文献   

19.
Mutikainen P  Koskela T 《Heredity》2002,89(4):318-324
Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations.  相似文献   

20.
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号