首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insecticide resistance status of Culex quinquefasciatus Say (Diptera: Culicidae) to DDT and deltamethrin across army cantonments and neighbouring villages in northeastern India was investigated. In India, DDT is still the insecticide of choice for public health programmes. In military stations, pyrethroids, especially deltamethrins, are used for insecticide‐treated nets (ITNs). Recent information on the levels of resistance to DDT and deltamethrin in mosquito populations of northeastern India is scare. Continued monitoring of insecticide resistance status, identification of the underlying mechanisms of resistance in local mosquito populations and the establishment of a baseline data bank of this information are of prime importance. Insecticide susceptibility assays were performed on wild‐caught adult female Cx. quinquefasciatus mosquitoes to the discriminating doses recommended by the World Health Organisation (WHO) to DDT (4%) and deltamethrin (0.05%). Across all study sites, mortality as a result of DDT varied from 11.9 to 50.0%, as compared with 91.2% in the susceptible laboratory strain (S‐Lab), indicating that Cx. quinquefasciatus is resistant to DDT. The species was found to be 100% susceptible to deltamethrin in all study sites except Benganajuli and Rikamari. Knock‐down times (KDT) in response to deltamethrin varied significantly between study sites (P < 0.01) from 8.3 to 17.8 min for KDT50 and 37.4 to 69.5 min for KDT90. All populations exceeded the threshold level of alpha‐esterase, beta‐esterase and glutathion S‐transferase (GST) established for the S‐Lab susceptible strain, and all populations had 100% elevated esterase and GST activity, except Missamari and Solmara. Beta‐esterase activity in Field Unit II (96.9%) was less than in any of the other populations. Benganajuli had the highest activity level for all the enzymes tested. There was a significant correlation between all enzyme activity levels and insecticide resistance phenotype by populations (P < 0.05). The results presented here provide the first report and baseline information of the insecticide resistance status of Cx. quinquefasciatus in northeastern India, and associated information about biochemical mechanisms that are essential for monitoring the development of insecticide resistance in the area.  相似文献   

2.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide used for larval mosquito control and it represents a safe alternative to chemical insecticides. Despite its environmental safety, it is less efficient and persistent than chemical insecticides. To bypass these limitations, we propose to combine the advantages of chemical and biological insecticides by producing Bti in a medium supplemented with a chemical insecticide (DDT, deltamethrin, permethrin, propoxur or temephos). Among the investigated insecticides, the addition of deltamethrin in the medium induced a higher toxicity (over 6·72‐fold) of the composite deltamethrin‐Bti towards mosquito larvae as compared to Bti alone. This was mainly due to the insertion of deltamethrin into the membranes of Bti spores, as evidenced by a quantification of membrane‐extracted deltamethrin by HPLC. This composite larvicide is a promising tool to decrease the quantity of chemicals dispersed in the environment, to increase the efficacy of Bti and to facilitate its widespread use as a transition between chemical and biological insecticides. Further experiments are required to characterize the mechanisms that underline the incorporation of deltamethrin into Bti to optimize the production and the toxicity of this composite larvicide.

Significance and Impact of the Study

This study is the first report of an increased efficacy of the mosquitocidal bioinsecticide Bacillus thuringiensis subsp. israelensis (Bti) when produced with a chemical insecticide. The results clearly demonstrate that deltamethrin is able to synergize the insecticidal activity of Bti through inclusion into spore membranes, reducing off‐target and nonspecific toxicity occurring when the chemical is used alone as sprays. This new composite chemical–biological insecticide can become an invaluable tool as an intermediate between single chemical usage and the widespread use of Bti, notably in developing countries with limited financial resources for intensive mosquito control campaigns.  相似文献   

3.
Bacillus thuringiensis var. israelensis (Bti) is the most commonly used larvicide to control mosquitoes worldwide. Considered as nontoxic to most organisms, Bti can nevertheless cause trophic perturbations to natural communities by reducing the abundance of Chironomidae, which are a key element of wetland food webs. Since August 2006, up to 8400 of the 33 000 ha of mosquito larval biotopes in the Camargue (Rhône delta, in southern France), are monitored by a public agency and Bti‐sprayed (aqueous solution of VectoBac 12AS at 2.5 L/ha) whenever mosquito larvae (Ochlerotatus caspius and Oc. detritus) appeared in water bodies. This resulted in 30–50 aerial treatments/year, in addition to ground spraying of unknown frequency. The sprayed habitats include Phragmites australis reedbeds, which support a specific avifauna of conservation concern. We compared the abundance of invertebrate prey available to passerine birds at treated and control sites relative to the predicted values based on hydrology over a 9‐year period. Food available to reed passerines was significantly reduced at treated areas, translating into a 34% decrease in breeding birds based on predictive modeling. The most affected arthropods were Diptera, Aranaea, Coleoptera, and Hymenoptera. No cumulative effects were observed over time, but the recovery of the invertebrate assemblage after the cessation of mosquito control was delayed due to Bti spore persistence and proliferation in the sediments. While hydrology remains a prime factor influencing primary and secondary productivity of the Camargue reed marshes, Bti spraying had significant negative effects on animal communities at several trophic levels.  相似文献   

4.
The microbial larvicides Bacillus thuringiensis var. israelensis (Bti) and Bacillus sphaericus (Bs) (Bacillales: Bacillaceae) are well known for their efficacy and safety in mosquito control. In order to assess their potential value in future mosquito control strategies in western Kenya, the current study tested the susceptibility of five populations of Anopheles gambiae complex mosquitoes (Diptera: Culicidae), collected from five diverse ecological sites in this area, to Bti and Bs under laboratory conditions. In each population, bioassays were conducted with eight concentrations of larvicide (Bti/Bs) in four replicates and were repeated on three separate days. Larval mortality was recorded at 24 h or 48 h after the application of larvicide and subjected to probit analysis. A total of 2400 An. gambiae complex larvae from each population were tested for their susceptibility to Bti and Bs. The mean (± standard error of the mean, SEM) lethal concentration values of Bti required to achieve 50% and 95% larval mortality (LC50 and LC95) across the five populations were 0.062 (± 0.005) mg/L and 0.797 (± 0.087) mg/L, respectively. Corresponding mean (± SEM) values for Bs were 0.058 (± 0.005) mg/L and 0.451 (± 0.053) mg/L, respectively. Statistical analysis indicated that the five populations of An. gambiae complex mosquitoes tested were fully susceptible to Bti and Bs, and there was no significant variation in susceptibility among the tested populations.  相似文献   

5.
Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans), an increased tolerance to Cry4Aa (3.5-fold) and Cry11Aa toxins (8-fold) was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.  相似文献   

6.
7.
The floodwater mosquito Aedes vexans can be a massive nuisance in the flood plain areas of mainland Europe, and is the vector of Tahyna virus and a potential vector of Dirofilaria immitis. This epidemiologically important species forms three subspecies worldwide, of which Aedes vexans arabiensis has a wide distribution in Europe and Africa. We quantified the genetic and phenotypic variation in Ae. vexans arabiensis in populations from Sweden (northern Europe), Hungary, and Serbia (central Europe). A landscape genetics approach (FST, STRUCTURE, BAPS, GENELAND) revealed significant differentiation between northern and southern populations. Similar to genetic data, wing geometric morphometrics revealed two different clusters, one made by Swedish populations, while another included Hungarian and Serbian populations. Moreover, integrated genetic and morphometric data from the spatial analysis suggested groupings of populations into three clusters, one of which was from Swedish and Hungarian populations. Data on spatial analysis regarding an intermediate status of the Hungarian population was supported by observed Isolation‐by‐Distance patterns. Furthermore, a low proportion of interpopulation vs intrapopulation variance revealed by AMOVA and low‐to‐moderate FST values on a broader geographical scale indicate a continuous between‐population exchange of individuals, including considerable gene flow on the regional scale, are likely to be responsible for the maintenance of the observed population similarity in Aе. vexans. We discussed data considering population structure in the light of vector control strategies of the mosquito from public health importance.  相似文献   

8.
Understanding patterns of reproduction, dispersal and recruitment in deep‐sea communities is increasingly important with the need to manage resource extraction and conserve species diversity. Glass sponges are usually found in deep water (>1000 m) worldwide but form kilometre‐long reefs on the continental shelf of British Columbia and Alaska that are under threat from trawling and resource exploration. Due to their deep‐water habitat, larvae have not yet been found and the level of genetic connectivity between reefs and nonreef communities is unknown. The genetic structure of Aphrocallistes vastus, the primary reef‐building species in the Strait of Georgia (SoG) British Columbia, was studied using single nucleotide polymorphisms (SNPs). Pairwise comparisons of multilocus genotypes were used to assess whether sexual reproduction is common. Structure was examined 1) between individuals in reefs, 2) between reefs and 3) between sites in and outside the SoG. Sixty‐seven SNPs were genotyped in 91 samples from areas in and around the SoG, including four sponge reefs and nearby nonreef sites. The results show that sponge reefs are formed through sexual reproduction. Within a reef and across the SoG basin, the genetic distance between individuals does not vary with geographic distance (r = ?0.005 to 0.014), but populations within the SoG basin are genetically distinct from populations in Barkley Sound, on the west coast of Vancouver Island. Population structure was seen across all sample sites (global FST = 0.248), especially between SoG and non‐SoG locations (average pairwise FST = 0.251). Our results suggest that genetic mixing occurs across sponge reefs via larvae that disperse widely.  相似文献   

9.
The effects of microbial biopesticides used for mosquito control on autotrophic microorganisms such as nanophytoplankton are equivocal. We examined impacts of mosquito biopesticides and mosquito larvae on primary producers in two independent experiments. In the first experiment, we examined the effects of a commonly used microbial biopesticide formulation (VectoMax® CG) on a unicellular microalga, Selenastrum capricornatum Printz, under axenic laboratory conditions. The biopesticide treatments included two concentrations (0.008 and 0.016 g liter?1) of VectoMax® CG and two controls (one untreated and another with autoclaved 0.016 g VectoMax® CG liter?1) in replicated axenic experimental microcosms. Spectrophotometric analysis of chlorophyll a (proxy for algal biomass) and direct enumeration of algal cells following the treatments revealed no significant effects of the microbial biopesticide on algal population growth during the four‐week study. In the second experiment, we tested the effects of different densities of Culex larvae on the population of S. capricornatum. Effects of mosquito larvae feeding on S. capricornatum were significant with a curvilinear relationship between larval density and algal abundance in the water column. Together, these studies demonstrated a lack of direct cytological/toxicological effects of Bacillus‐based microbial pesticides on freshwater primary production and support the hypothesis that the reduction in algal primary production previously reported when Bti products were applied to aquatic environments was likely independent of the Bacillus‐based larvicidal toxins. Instead, it was likely mediated by microbial interactions in the water column and the trophic cascade effects that resulted from the removal of larval mosquitoes. These studies suggest that mosquito larvae independent of pesticide application can influence primary production. Our method of evaluating biopesticides against small photoautotrophs can be very useful for studying the unintended effects on autotrophic microorganisms of other pesticides, including herbicides and pesticides applied to aquatic environments.  相似文献   

10.
In order to determine the combined effects of migration and gene flow on evolution of insecticide resistance in the mosquito Culex pipiens, four samples were collected in China, among which two were collected along the railway from Beijing to Guangzhou. Bioassay data showed that the resistance levels of the four populations to dichlorvos were high and to parathion moderate as compared with the susceptible strain and there was no significant difference among the four populations to the same organophosphate (OP) insecticide. Starch electrophoresis was done to identify the frequency of known overproduced esterases and to analyze genetic diversity among various populations by electrophoretic polymorphism of five presumably neutral loci. The results indicated that the gene flow between populations existed and the number of effective migrants (Nm) was related to collection geography (Nm from 1.67 to 40.07). In contrast with lower genetic differentiation between two nearby populations (between GZ and ZS, ZZ and SQ) and higher genetic differentiation between two distant populations (between GZ and ZZ), there was a significant and inconsistent difference in the distribution of resistance alleles, A2‐B2 when explained only with active migration. This divergent situation could be straightened out when considering passive migration (such as railway transport) which increased the spread of A2‐B2 along the railway, i.e., in GZ and ZZ. The resistance alleles, A2‐B2, dispersing to around areas by active migration suffered from the limitation of gene flow and the speed of invasion.  相似文献   

11.
Integrated management of mosquitoes is becoming increasingly important, particularly in relation to avoiding recolonization of ponds after larvicide treatment. We conducted for the first time field experiments that involved exposing natural populations of the mosquito species Culex pipiens to: a) application of the biological insecticide Bacillus thuringiensis israelensis (Bti), b) the introduction of natural competitors (a crustacean community composed mainly of Daphnia spp.), or c) a combined treatment that involved both introduction of a crustacean community and the application of Bti. The treatment that involved only the introduction of crustaceans had no significant effect on mosquito larval populations, while treatment with Bti alone caused only a significant reduction in the abundance of mosquito larvae in the short‐term (within 3–10 days after treatment). In contrast, the combined treatment rapidly reduced the abundance of mosquito larvae, which remained low throughout the entire observation period of 28 days. Growth of the introduced crustacean communities was favored by the immediate reduction in the abundance of mosquito larvae following Bti administration, thus preventing recolonization of ponds by mosquito larvae at the late period (days 14–28 after treatment). Both competition and the temporal order of establishment of different species are hence important mechanisms for efficient and sustainable mosquito control.  相似文献   

12.
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock‐down‐resistant (kdr) mutants in the voltage‐gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione‐S‐transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95, increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.  相似文献   

13.
Fine‐scale genetic structure of large mammals is rarely analysed. Yet it is potentially important in estimating gene flow between the now fragmented wildlife habitats and in predicting re‐colonization following local extinction events. In this study, we examined the extent to which warthog populations from five localities in Uganda are genetically structured using both mitochondrial control region sequence and microsatellite allele length variation. Four of the localities (Queen Elizabeth, Murchison Falls, Lake Mburo and Kidepo Valley) are national parks with relatively good wildlife protection practices and the other (Luwero), not a protected area, is characterized by a great deal of hunting. In the total sample, significant genetic differentiation was observed at both the mtDNA locus (FST = 0.68; P < 0.001) and the microsatellite loci (FST = 0.14; P < 0.001). Despite the relatively short geographical distances between populations, significant genetic differentiation was observed in all pair‐wise population comparisons at the two marker sets (mtDNA FST = 0.21–0.79, P < 0.001; microsatellite FST = 0.074–0.191, P < 0.001). Significant heterozygote deficiency was observed at most loci within protected areas while no significant deviation from Hardy–Weinberg expectation was observed in the unprotected Luwero population. We explain these results in terms of: (i) a strong philopatry among warthogs, (ii) a Wahlund effect resulting from the sampling regime and (iii) break down of social structure in the disturbed Luwero population.  相似文献   

14.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

15.
Mitochondrial DNA (mtDNA) control region sequences and microsatellite loci length polymorphisms were used to investigate genetic differentiation in spotted dolphins (Stenella attenuata) in the Eastern Tropical Pacific and to examine the intraspecific structure of the coastal subspecies (Stenella attenuata graffmani). One-hundred and thirty-five animals from several coastal areas and 90 offshore animals were sequenced for 455 bp of the mitochondrial control region, resulting in 112 mtDNA haplotypes. Phylogenetic analyses and the existence of shared haplotypes between the two subspecies suggest recent and/or current gene flow. Analyses using χ2, F ST (based on haplotype frequencies) and ΦST values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (randomized permutation values P<0.05) among four different coastal populations and between all but one of these and the offshore subspecies (overall F ST=0.0691). Ninety-one coastal animals from these four geographic populations and 50 offshore animals were genotyped for seven nuclear microsatellite loci. Analysis using F ST values (based on allelic frequencies) yielded statistically significant separation between most coastal populations and offshore animals, although no coastal populations were distinguished. These results argue for the existence of some genetic isolation between offshore and inshore populations and among some inshore populations, suggesting that these should be treated as separate units for management purposes.  相似文献   

16.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

17.
The multistep method here applied in studying the genetic structure of a low dispersal and philopatric species, such as the Fire Salamander Salamandra salamandra, was proved to be effective in identifying the hierarchical structure of populations living in broad‐leaved forest ecosystems in Northern Italy. In this study, 477 salamander larvae, collected in 28 sampling populations (SPs) in the Prealpine and in the foothill areas of Northern Italy, were genotyped at 16 specie‐specific microsatellites. SPs showed a significant overall genetic variation (Global FST = 0.032, < 0.001). The genetic population structure was assessed by using STRUCTURE 2.3.4. We found two main genetic groups, one represented by SPs inhabiting the Prealpine belt, which maintain connections with those of the Eastern foothill lowland (PEF), and a second group with the SPs of the Western foothill lowland (WF). The two groups were significantly distinct with a Global FST of 0.010 (< 0.001). While the first group showed a moderate structure, with only one divergent SP (Global FST = 0.006, < 0.001), the second group proved more structured being divided in four clusters (Global FST = 0.017, = 0.058). This genetic population structure should be due to the large conurbations and main roads that separate the WF group from the Prealpine belt and the Eastern foothill lowland. The adopted methods allowed the analysis of the genetic population structure of Fire Salamander from wide to local scale, identifying different degrees of genetic divergence of their populations derived from forest fragmentation induced by urban and infrastructure sprawl.  相似文献   

18.
19.
G ST‐values and its relatives (FST) belong to the most used parameters to define genetic differences between populations. Originally, they were developed for allozymes with very low number of alleles. Using highly polymorphic microsatellite markers it was often puzzling that GST‐values were very low but statistically significant. In their papers, Jost (2008) and Hedrick (2005) explained that GST‐values do not show genetic differentiation, and Jost suggested calculating D‐values instead. Theoretical mathematical considerations are often difficult to follow; therefore, we chose an applied approach comparing two artificial populations with different number of alleles at equal frequencies and known genetic divergence. Our results show that even for more than one allele per population GST‐values do not calculate population differentiation correctly; in contrast, D‐values do reflect the genetic differentiation indicating that data based on GST‐values need to be re‐evaluated. In our approach, statistical evaluations remained similar. We provide information about the impact of different sample sizes on D‐values in relation to number of alleles and genetic divergence.  相似文献   

20.
How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA) and trait differentiation (QST) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50‐fold in census size N (179–8416) and 10‐fold in effective number of breeders, Nb (18–135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号