首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal connections of the tritocerebral commissures of Periplaneta americana were studied in the brain-suboesophageal ganglion complex and the stomatogastric nervous system by means of heavy metal iontophoresis through cut nerve ends followed by silver intensification. The tritocerebral commissure 1 (Tc1) contains mainly the processes of the subpharyngeal nerve (Spn) whose neurons are located in both tritocerebral lobes and in the frontal ganglion. Some neurons of the frontal ganglion project through the Tc1 to the contralateral tritocerebrum. A few fibers in this commissure were observed projecting to the protocerebrum and the suboesophageal ganglion. There are tritocerebral neurons which pass through the Tc1 or the tritocerebral commissure 2 (Tc2) and extend on into the stomatogastric nervous system. One axon of a descending gaint neuron appears in the Tc2. This neuron lies in the tritocerebrum and connects the brain to the contralateral side of the ventral nerve cord. In addition, sensory fibers of the labral nerve (Ln) traverse both commissures to the opposite tritocerebrum. The anatomical and physiological relevance of the identified neuronal pathways is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The present paper is a critical review of data and hypotheses on the head segmental composition in chelicerates and in extinct non‐mandibulate arthropods. It successively takes into account data from morphology and embryology, from the structure of the nervous system, from palaeontology and from developmental genetics. Discussion focuses on possible homologies between the head segments and appendages in arachnomorphs and those in mandibulates. The comparative anatomical and ontogenetic data, especially those concerning the central nervous system, its connections with the stomatogastric system, and head innervation, show many similarities between the head organization of chelicerates and that of mandibulates, and lead to conclusions that contradict some of the hypotheses deduced from recent studies on developmental biology, but favour more traditional views. In particular they support the presence of a deutocerebral segment in the head region of the ground pattern of arthropods and its loss in all extant chelicerates. They also support the homology of the cheliceral ganglia with the tritocerebral ganglia of mandibulates. The possible existence of a precheliceral segment and of a presegmental acron remains open to question.  相似文献   

3.
The evolutionary origin of the tritocerebral neuromere, which is a brain segment located at the junction between the supra- and subesophageal ganglia in most mandibulates (arthropods such as crustaceans and insects), is a subject rich in contentious debate. Various models have argued that the tritocerebrum came from a segmental nerve cord ganglia that was recruited into the head during the course of arthropod evolution. However, despite much thought on the subject, the origin of the tritocerebrum remains obscure. Here I describe the development of the tritocerebral commissure in Drosophila and demonstrate that the tritocerebral and mandibular commissures actually form as one commissure and then separate in a manner very similar to how the anterior and posterior commissures of a ventral nerve cord neuromere form. I propose that the tritocerebral neuromere originated from the splitting of an ancestral neuromere located in the anterior subesophageal ganglion into distinct tritocerebral and mandibular neuromeres. Also, I discuss the problem of arthropod brain neuromere homology in reference to this hypothesis.  相似文献   

4.
We investigated brain development in the horseshoe crab Limulus polyphemus and several other arthropods via immunocytochemical methods, i.e. antibody stainings against acetylated alpha-tubulin and synapsin. According to the traditional view, the first appendage-bearing segment in chelicerates (the chelicerae) is not homologous to the first appendage-bearing segment of mandibulates (first antenna, deutocerebrum) but to the segment of the second antenna (tritocerebrum) or the intercalary segment in hexapods and myriapods. Accordingly, the segment of the deutocerebrum in chelicerates would be completely reduced. The main arguments for this view are: (1) the postoral origin of the cheliceral ganglion, (2) a poststomodaeal commissure, and (3) a connection of the cheliceral ganglion to the stomatogastric system. Our data show that these arguments are not convincing. During the development of horseshoe crabs there is no evidence for a former additional segment in front of the chelicerae. Instead, comparison of the brain structure (neuropil ring) between chelicerates, crustaceans and insects shows remarkable similarities. Furthermore, the cheliceral commissure in horseshoe crabs runs mainly praestomodaeal, which would be unique for a tritocerebral commissure. An unbiased view of the developing nervous system in the "head" of chelicerates, crustaceans and insects leads to a homologisation of the cheliceral segment and that of the (first) antenna (= deutocerebrum) of mandibulates that is also congruous to the interpretation of the Hox gene expression patterns. Thus, our data provide morphological evidence for the existence of a chelicerate deutocerebrum.  相似文献   

5.

Background

While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli.

Methodology/Principal Findings

Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies.

Conclusions/Significance

A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure.  相似文献   

6.
Embryonic development of the head of Oxyrhachis tarandus (Membracidae) has been investigated in detail to settle the controversy of head segmentation and to refute the occurrence of an intercalary segment. The head is formed from six distinct elements: the prostominal lobe, the paired cephalic lobes, the antennal segment and the three noncontroversial gnathal segments. The prostomial lobe, which possesses a neuromere and a pair of coelomic cavities, represents the first body segment, called the prostomial segment. The tritocerebral lobes of the brain and the stomatogastric nervous system, consisting of a frontal ganglion, clypeolabral nerves, and the recurrent nerve etc., develop from the neuromere of the prostomial lobe. The tritocerebrum thus belongs to the prostomial segment rather than to an imaginary intercalary segment and mainly represents the ganglionic center of the stomatogastric nervous system in the brain. Frons, clypeus, and labrum develop from the outer wall of the prostomial lobulate plate, whereas the epipharyngeal wall, including the cibarial pump, develops from its inner wall. The presence of three coelomic cavities and of three distinct neural masses in the cephalic lobes during the initial stages of development shows that they have developed by the fusion of three distinct segments during the long phylogenetic history of insects. The portion of the germ band presently considered as the intercalary segment is actually the sternal part of the antennal segment. The neural cells located in this region give rise to the deutocerebrum by shifting forward, around the stomodaeum, and always leaving a commissure behind. The intercalary segment is thus a complete illusion. The antennal segment is postoral in the beginning and bears a pair of coelomic cavities, but later on it shifts forward and its sternal part invaginates into the stomodaeum.  相似文献   

7.
Summary The frontal ganglion of the cockroach Periplaneta americana was studied histologically and its neuronal pathways were mapped by use of axonal cobalt iontophoresis. Neurons and fiber tracts of the frontal ganglion are directly linked with different regions of the central nervous system (tritocerebrum, protocerebrum, subesophageal ganglion) and with the more caudal parts of the stomatogastric nervous system (hypocerebral ganglion, nervus oesophagei).Supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

8.
Our analysis of head segmentation in the locust embryo reveals that the labrum is not apical as often interpreted but constitutes the topologically fused appendicular pair of appendages of the third head metamere. Using molecular, immunocytochemical and retrograde axonal staining methods we show that this metamere, the intercalary segment, is innervated by the third brain neuromere-the tritocerebrum. Evidence for the appendicular nature of the labrum is firstly, the presence of an engrailed stripe within its posterior epithelium as is typical of all appendages in the early embryo. Secondly, the labrum is innervated by a segmental nerve originating from the third brain neuromere (the tritocerebrum). Immunocytochemical staining with Lazarillo and horseradish peroxidase antibodies reveal that sensory neurons on the labrum contribute to the segmental (tritocerebral) nerve via the labral nerve in the same way as for the appendages immediately anterior (antenna) and posterior (mandible) on the head. All but one of the adult and embryonic motoneurons innervating the muscles of the labrum have their cell bodies and dendrites located completely within the tritocerebral neuromere and putatively derive from engrailed expressing tritocerebral neuroblasts. Molecular evidence (repo) suggests the labrum is not only appendicular but also articulated, comprising two jointed elements homologous to the coxa and trochanter of the leg.  相似文献   

9.
Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed. Arch. Insect Biochem. Physiol. 37:269–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Silver impregnation of serial histological sections of the tubeworm Chaetopterus variopedatus revealed the presence of a subepidermal nervous system. The anterior nervous system is delimited by the first 11 segments and comprises (1) two dorsolateral cerebral ganglia and lateral instead of ventral nerve cords which are widely separated and thus connected by unusually long commissures, (2) a pharyngeal ganglion in the fourth segment which is connected to the cerebral ganglia by pharyngeal nerves and constitutes along with the pharyngeal plexus a stomatogastric or enteric nervous system, and (3) small, presumably segmental ganglionic swellings along the lateral nerve cords from which emerge commissures and parapodial nerves. No subesophageal ganglion or periesophageal connective could be identified. The lateral nerve cords converge toward the midline in the 12th segment to form the posterior nervous system comprising a pair of ventromedian nerve cords with their repetitive segmental ganglia from which emerge numerous short commissures and three segmental nerves coursing toward the dorsal and ventral regions of parapods and toward the neuropod. Light and electron microscopic investigations of cerebral and segmental ganglia showed an arrangement of inner neuropile and of unipolar neuron somata at the periphery. The neuropile comprises numerous neurites ranging in diameter from 0.5 to 10 μm and making polarized or symmetrical synaptic junctions with each other. The pharyngeal ganglion consists of a similar neuropile and of a large mass of cell bodies which is traversed by an elaborate network of sinuses and harbors three types of neurosecretory cells in addition to the conventional neuron somata. These findings are interpreted in the framework of the highly specialized morphological features and habits of Chaetopterus, and the welldeveloped stomatogastric system is considered to be related to control of the feeding activities.  相似文献   

11.
Scanning electron microscopy and immunohistochemical staining for FMRFamide-like peptides revealed that the stomatogastric nervous system of Galleria mellonella (Lepidoptera : Pyralidae) includes 5 ganglia: the frontal ganglion with 4, the hypocerebral ganglion with 2, the ingluvial ganglion with 2–4, and each of the paired proventricular ganglia with 6–8 immunoreactive perikarya. Immunoreactivity was also found in axons to and within the corpora cardiaca, in the nerves connecting stomatogastric ganglia, as well as in 8 gastric nerves that extend along longitudinal midgut muscles. Adhesion of corpora cardiaca to the hypocerebral ganglion and partial merging and shortening of gastric nerves were the only conspicuous changes of the stomatogastric system that occurred during metamorphosis.  相似文献   

12.
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

13.
Summary We used a polyclonal antiserum against histamine to map histaminelike immunoreactivity (HLI) in whole mounts of the segmental ganglia and stomatogastric ganglion of crayfish and lobster. Carbodiimide fixation permitted both HRP-conjugated and FITC-conjugated secondary antibodies to be used effectively to visualize HLI in these whole mounts. Two interneurons that send axons through the inferior ventricular nerve (ivn) and the stomatogastric nerve to the stomatogastric ganglion had strong HLI, both in crayfish and in lobster. These ivn interneurons were known from other evidence to be histaminergic. The neuropil of the stomatogastric ganglion in both crayfish and lobster contained brightly labeled terminals of axons that entered the ganglion from the stomatogastric nerve. No neuronal cell bodies in this ganglion had HLI. Each segmental ganglion contained at least one pair of neurons with HLI. Some neurons in the subesophageal ganglion and in each thoracic ganglion labeled very brightly. Axons of projection interneurons with strong HLI occurred in the dorsal lateral tracts of each segmental ganglion, and sent branches to the lateral neuropils and tract neuropils of each ganglion. All the labeled neurons were interneurons; no HLI was observed in peripheral nerves.  相似文献   

14.
Mystacocarida is a species‐poor group of minute crustaceans with unclear phylogenetic affinities. Previous studies have highlighted the putative “primitiveness” of several mystacocarid features, including the architecture of the nervous system. Recent studies on arthropod neuroarchitecture have provided a wealth of characters valuable for phylogenetic reconstructions. To permit and facilitate comparison with these data, we used immunohistochemical labeling (against acetylated α‐tubulin, serotonin and FMRFamide) on the mystacocarid Derocheilocaris remanei, analyzing it with confocal laser‐scanning microscopy and 3D reconstruction. The mystacocarid brain is fairly elongated, exhibiting a complicated stereotypic arrangement of neurite bundles. However, none of the applied markers provided evidence of structured neuropils such as a central body or olfactory glomeruli. A completely fused subesophageal ganglion is not present, all segmental soma clusters of the respective neuromeres still being delimitable. The distinct mandibular commissure comprises neurite bundles from more anterior regions, leading us to propose that it may have fused with an ancestral posterior tritocerebral commissure. The postcephalic ventral nervous system displays a typical ladder‐like structure with separated ganglia which bears some resemblance to larval stages in other crustaceans. Ganglia and commissures are also present in the first three limbless “abdominal” segments, which casts doubt on the notion of a clear‐cut distinction between thorax and abdomen. An unpaired longitudinal median neurite bundle is present and discussed as a potential tetraconate autapomorphy. Additionally, a paired latero‐longitudinal neurite bundle extends along the trunk. It is connected to the intersegmental nerves and most likely fulfils neurohemal functions. We report the complete absence of serotonin‐ir neurons in the ventral nervous system, which is a unique condition in arthropods and herein interpreted as a derived character. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Summary The distribution of substance P-like immunoreactivity in the stomatogastric nervous systems of three decapod crustacean species, Cancer borealis, Homarus americanus, and Panulirus interruptus, was studied. The stomatogastric ganglion showed dense staining in the neuropil, but none in the somata. A single neuron stained in the esophageal ganglion. Lucifer yellow backfills and intracellular injections followed by incubation with the substance P antibody showed that the axons of this neuron project into the inferior esophageal nerves towards the paired commissural ganglia. The commissural ganglia showed a pronounced projection from a large bundle of fibers in the anterior medial portion of the circumesophageal connective. Additionally, less dense neuropil and stained somata were seen in the commissural ganglia. Staining was completely blocked by preabsorption with authentic substance P, physalaemin, eledoisin, and substance K. These data suggest that in the nervous system of crustacean species a molecule with C-terminal homology to substance P and other tachykinins is released as a neuroregulator in the stomatogastric ganglion.  相似文献   

16.
Summary Evidence is presented that neurons in the adult Colorado potato beetle contain a proctolin-like substance. By use of immunocytochemical methods the location of immunoreactive neurons in the central and stomatogastric nervous systems is described. No such neurons were found in the proto- and deutocerebrum or optic lobe. Few immunoreactive neurons are present in the tritocerebrum and numerous proctolin-immunoreactive neurons occur in all ventral ganglia and in the frontal ganglion. Two groups of neurosecretory cells in the suboesophageal ganglion contain a proctolin-immunoreactive substance. In these cells this material is co-localized with a bovine pancreatic polypeptide/FMRF amide-like substance and with a vasopressin/vasotocin/oxytocin-like substance. Proctolin-immunoreactive axon terminals were found on the musculature of the fore- and hindgut and of the vas deferens, and on some segmental muscles. Furthermore, proctolin-immunoreactive neurosecretory axon terminals were found in the corpus cardiacum. The proctolin-like substance may therefore function both as a neurotransmitter/neuromodulator and as a neurohormone. The presence of a proctolin-like substance was also demonstrated with a sensitive bioassay. On fractionation of extracts of the nervous systems of Leptinotarsa decemlineata with high performance liquid chromatography most of the proctolin-like bioactive material comigrated with authentic proctolin. This shows that a proctolin-like substance in this insect is very similar to, if not identical with, the known pentapeptide proctolin.  相似文献   

17.
By means of whole-mount immunohistochemistry, putative inhibitory (GABAergic) neural structures were identified in the central and peripheral nervous system of the tubificid worm, Limnodrilus hoffmeisteri. In the supraoesophageal ganglion (brain) only few strongly labelled cells were observed. However, in its commissural part a high number of stained nerve fibres, arising mainly from the ventral nerve cord and prostomium, occurred. Except for the suboesophageal ganglion the arrangement of γ-amino butyric acid-immunoreactive (GABA-IR) structures proved to be identical in each VNC ganglion. Behind the first segmental nerves three pairs of heavily stained neurones were located. Their processes (both ipsi- and contralateral) form four bundles of fine-fibred polysegmental interneuronal tracts that run close to the dorsal giant axons from the terminal ganglion to the suboesophageal one without interruption. A few small motoneurons and a pair of large ones with contralateral processes were also identified. A bipolar (presumably sensory) neuron was located at the root of each second segmental nerve. GABA-IR neurons were also found in the stomatogastric ganglia and pharyngeal wall; however, the latter structure had a well-developed fibre network, as well. Present results suggest that GABA acts as a common neurotransmitter in sensory, interneuronal and motor system of L. hoffmeisteri. The possible functional role of the identified GABA-IR neural structures in locomotion, escape and withdrawal reflexes in tubificid worms is discussed.  相似文献   

18.
19.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

20.
Summary The neuronal pathways connecting the stomatogastric nervous system with the retrocerebral complex of the cockroach, Periplaneta americana, were investigated by means of axonal cobalt chloride iontophoresis. Somata in the hypocerebral ganglion and in the nervus recurrens sending their axons to different parts of the stomatogastric nervous system were traced. Some axons in the oesophageal nerve arise from large perikarya in the anterior part of the pars intercerebralis and pass via the NCCI to the corpora cardiaca and the oesophageal nerve. They form a profuse dendritic tree in the protocerebrum. Fibers of the NCC I and NCC II as well as the NCA I and NCA II enter the stomatogastric nervous system via the hypocerebral ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号