首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an additional step toward the dissection of the factors responsible for the onset of 3(10)-helix vs alpha-helix in peptides, in this paper we describe the results of a three-dimensional (3D) structural analysis by x-ray diffraction of the N(alpha)-acylated heptapeptide alkylamide mBrBz-L-Iva-L-(alphaMe)Val-L-Abu-L-(alphaMe)Val-L-(alphaMe)Phe-L-(alphaMe)Val-L-Iva-NHMe characterized by a single (L-Abu3) C(alpha)-trisubstituted and six C(alpha)-tetrasubstituted alpha-amino acids. We find that in the crystal state this peptide is folded in a mixed helical structure with short elements of 3(10)-helix at either terminus and a central region of alpha-helix. This finding, taken together with the published NMR and x-ray diffraction data on the all C(alpha)-methylated parent sequence and its L-Val2 analog (also the latter heptapeptide has a single C(alpha)-trisubstituted alpha-amino acid) strongly supports the view that one C(alpha)-trisubstituted alpha-amino acid inserted near the N-terminus of an N(alpha)-acylated heptapeptide alkylamide sequence may be enough to switch a regular 3(10)-helix into an essentially alpha-helical conformation. As a corollary of this work, the x-ray diffraction structure of the N(alpha)-protected, C-terminal tetrapeptide alkylamide Z-L-(alphaMe)Val-L-(alphaMe)Phe-L-(alphaMe)Val-L-Iva-NHMe, also reported here, is clearly indicative of the preference of this fully C(alpha)-methylated, short peptide for the 3(10)-helix. As the same terminally blocked sequence is mixed 3(10)/alpha-helical in the L-Abu3 heptapeptide amide but regular 3(10)-helical in the tetrapeptide amide and in the parent heptapeptide amide, these results point to an evident plasticity even of a fully C(alpha)-methylated short peptide.  相似文献   

2.
Using a combined chemical/chiral chromatographic approach we synthesized an N-protected derivative of (R)-c(3)Val, a severely conformationally restricted C(alpha)-tetrasubstituted alpha-amino acid characterized by a C(beta,beta)-dimethylated cyclopropane system. A set of terminally protected derivatives and model peptides (to the heptamer level), containing one or two (R)-c(3)Val residues in combination with either Aib or Gly residues, was prepared by solution methods. A detailed solution and crystal-state conformational investigation, based on Fourier transform infrared (FTIR) absorption, (1)H-NMR, and x-ray diffraction techniques, performed in comparison with a similar study on related derivatives and peptides rich in (alphaMe)Val, the prototype of C(alpha)-tetrasubstituted alpha-amino acids of this subfamily, allowed us to conclude the following: (a) c(3)Val is a good beta-bend and helix former, although less efficient than (alphaMe)Val. (b) The relationship between alpha-carbon chirality and screw sense of the folded structure formed is the same as that of (alphaMe)Val, i.e., the (R)-enantiomer has a strong left-handed bias. (c) c(3)Val seems more prone than (alphaMe)Val to fold into a gamma-bend conformation. The conformational propensities of C(beta,beta)-disubstituted Ac(3)c residues are also discussed in comparison with those of the parent cyclopropane residue.  相似文献   

3.
The lipophilic, chiral, C(alpha)-methylated alpha-amino acid L-(alphaMe)Aoc (2-methyl-2-amino-octanoic acid) was prepared using a chemo-enzymatic approach. Two series of terminally protected model peptides, from dimer through to hexamer, containing L-(alphaMe)Aoc in combination with either Gly or Aib, were synthesized by solution methods and were fully characterized. A solution conformational analysis, based on FT-IR absorption, 1H-NMR and circular dichroism (CD) techniques, was performed with the aim at determining the preferred conformation of this novel amino acid and the relationship between chirality at its alpha-carbon atom and screw sense of the helix that is formed. The results obtained strongly support the view that L-(alphaMe)Aoc favours the formation of the right-handed 3(10)-helical conformation.  相似文献   

4.
In continuation of our studies on the determination of the structural features of functionalized peptides in solution by combining time-resolved fluorescence data and molecular mechanics results, the conformational features of a series of linear, L-(alphaMe)Val-based peptides have been investigated in methanol. These foldamers have the general formula F[(alphaMe)Val](r)-T-[(alphaMe)Val](2)NHtBu, where (alphaMe)Val = C(alpha)-methylvaline and r = 0-3, while F [= fluoren-9-ylmethoxycarbonyl (Fmoc)] and T [= 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-carboxylic (Toac)] are a fluorophoric N(alpha)-protecting group and a nitroxide-based alpha-amino acid quencher, respectively. According to ir and CD spectra, the longest term of the series (r = 3) attains a 3(10)-helical structure, while the other peptides populate an intramolecularly H-bonded, 3(10)-helix-like conformation affected by dynamic helical distortions, which are enhanced by the shortness of the backbone chain. Such distortions are reflected in both the energy of the stretching mode and the molar extinction coefficient of the H-bonded N-H groups, the former being higher and the latter smaller than those of a stable 3(10)-helix. Steady-state and time-resolved fluorescence measurements in methanol show a strong quenching of Fmoc by the Toac residue, located at different helix positions, depending on the r value. Comparison of quenching efficiencies and lifetime preexponents with those theoretically obtained from the deepest energy minimum conformers, assuming a F?rster mechanism, is satisfactory. The computed structures exhibit a rather compact arrangement, which accounts for the few sterically favored conformations for each peptide, in full agreement with the time-resolved fluorescence data. Orientational effects between the probes must be taken into account for a correct interpretation of the fluorescence decay results, implying that interconversion among conformational substates involving the probes is slower than the energy transfer rate.  相似文献   

5.
Deville J  Rey J  Chabbert M 《Proteins》2008,72(1):115-135
Alpha-helices are the most common secondary structures found in globular proteins. In this report, we analyze the stereochemical and sequence properties of helix-X-helix (HXH) motifs in which two alpha-helices are linked by a single residue, in search of characteristic structures and sequence signals. The analysis is carried out on a database of 837 nonredundant HXH motifs. The kinks are characterized by the bend angle between the axes of the N-terminal and C-terminal helices and the wobble angle corresponding to the rotation of C-terminal helix axis on the plane perpendicular to the N-terminal one. The phi-psi dihedral angles of the linker residue are clustered in six distinct areas of the Ramachandran plot: two areas are located in the additional allowed alpha region (alpha(1) and alpha(2)), two areas are in the additional allowed beta region (beta(1) and beta(2)) and two areas have positive phi values (alpha(L) and beta(M)). Each phi/psi region corresponds to characteristic bend and wobble angles and amino acid distributions. Bend angles can vary from 0 degrees to 160 degrees. Most wobble angles correspond to a counter-clockwise rotation of the C-terminal helix. Proline residues are rigorously excluded from the linker position X but have a high propensity at position X+1 of the beta(1) and beta(2) motifs (12 and 7, respectively) and at position X+3 of the alpha(1) motifs (9). Glycine linkers are located either in the alpha(L) region (20%) or in the beta(M) region (80%). This latter conformation is characterized by a marked bend angle (124 degrees +/- 18 degrees) and a clockwise wobble. Among other amino acids, Asn is remarkable for its high propensity (>3) at the linker position of the alpha(2), beta(1), and beta(2) motifs. Stabilization of HXH motifs by H-bonds between polar side chains of the linker and polar groups of the backbone is determined. A method based on position-specific scoring matrices is developed for conformational prediction. The accuracy of the predictions reaches 80% when the method is applied to proline-induced kinks or to kinks with bend angles in the 50 degrees-100 degrees range.  相似文献   

6.
Previous studies have revealed that transforming growth factor-beta-activated protein kinase 1 (TAB1) interacts with p38alpha and induces p38alpha autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38alpha that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38alpha. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the phi(B)+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38alpha is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38beta (which does not bind to TAB1) revealed a previously unidentified locus of p38alpha comprising Thr218 and Ile275 that is essential for specific binding of p38alpha to TAB1. Converting either of these residues to the corresponding amino acid of p38beta abolishes p38alpha interaction with TAB1. These p38alpha mutants still can be fully activated by p38alpha upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38alpha substrates and activators. This suggests that TAB1-induced autophosphorylation of p38alpha results from conformational changes that are similar but unique to those seen in p38alpha interactions with its substrates and activating kinases.  相似文献   

7.
The regulation of calcium levels across the membrane of the sarcoplasmic reticulum involves the complex interplay of several membrane proteins. Phospholamban is a 52 residue integral membrane protein that is involved in reversibly inhibiting the Ca(2+) pump and regulating the flow of Ca ions across the sarcoplasmic reticulum membrane during muscle contraction and relaxation. The structure of phospholamban is central to its regulatory role. Using homonuclear rotational resonance NMR methods, we show that the internuclear distances between [1-(13)C]Leu7 and [3-(13)C]Ala11 in the cytoplasmic region, between [1-(13)C]Pro21 and [3-(13)C]Ala24 in the juxtamembrane region and between [1-(13)C]Leu42 and [3-(13)C]Cys46 in the transmembrane domain of phospholamban are consistent with alpha-helical secondary structure. Additional heteronuclear rotational-echo double-resonance NMR measurements confirm that the secondary structure is helical in the region of Pro21 and that there are no large conformational changes upon phosphorylation. These results support the model of the phospholamban pentamer as a bundle of five long alpha-helices. The long extended helices provide a mechanism by which the cytoplasmic region of phospholamban interacts with residues in the cytoplasmic domain of the Ca(2+) pump.  相似文献   

8.
The alpha-aminoisobutyric (Aib) residue has generally been considered to be a strongly helicogenic residue as evidenced by its ability to promote helical folding in synthetic and natural sequences. Crystal structures of several peptide natural products, peptaibols, have revealed predominantly helical conformations, despite the presence of multiple helix-breaking Pro or Hyp residues. Survey of synthetic Aib-containing peptides shows a preponderance of 3(10)-, alpha-, and mixed 3(10)/alpha-helical structures. This review highlights the examples of Aib residues observed in nonhelical conformations, which fall 'primarily' into the polyproline II (P(II)) and fully extended regions of conformational space. The achiral Aib residue can adopt both left (alpha(L))- and right (alpha(R))-handed helical conformations. In sequences containing chiral amino acids, helix termination can occur by means of chiral reversal at an Aib residue, resulting in formation of a Schellman motif. Examples of Aib residues in unusual conformations are illustrated by surveying a database of Aib-containing crystal structures.  相似文献   

9.
The molecular and crystal structures of one derivative and three model peptides (to the pentapeptide level) of the chiral C alpha,alpha-disubstituted glycine C alpha-methyl, C alpha-isopropylglycine [(alpha Me)Val] have been determined by X-ray diffraction. The derivative is mClAc-L-(alpha Me)Val-OH, and the peptides are Z-L-(alpha Me)Val-(L-Ala)2-OMe monohydrate, Z-Aib-L-(alpha Me)Val-(Aib)2-OtBu, and Ac-(Aib)2-L-(alpha Me)Val-(Aib)2OtBu acetonitrile solvate. The tripeptide adopts a type-I beta-turn conformation stabilized by a 1----4N--H...O = C intramolecular H-bond. The tetra- and pentapeptides are folded in regular right-handed 3(10)-helices. All four L-(alpha Me)Val residues prefer phi, psi angles in the right-handed helical region of the conformational map. The results indicate that: (i) the (alpha Me)Val residue is a strong type-I/III beta-turn and helix former, and (ii) the relationship between (alpha Me)Val chirality and helix screw sense is the same as that of C alpha-monosubstituted protein amino-acids. The implications for the use of the (alpha Me)Val residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

10.
A useful synthon to approach artificial phenylalanyl peptides in a [2 + 2 + 2] cycloaddition reaction, C(alpha,alpha)-dipropargylglycine (Dprg) is examined for its conformational preferences as a constrained residue. Crystal structure analysis and preliminary NMR results establish possible preference of the residue for folded (alpha) rather than extended (beta) region of the straight phi,psi conformational space. Boc-Dprg-L-Leu-OMe (1) displays two molecular conformations within the same crystallographic asymmetric unit, with Dprg in the alpha(R) or alpha(L) conformation, participating in a type I beta-turn or an alpha(L)-alpha(R)-type fold, in which Leu(2) assumes the alpha(R) conformation stereochemically favored for an L-chiral residue. Boc-Dprg-D-Val-L-Leu-OMe (2) displays a type I' beta-turn conformation in crystal, with both Dprg(1) and D-Val(2) assuming the alpha(L) conformation stereochemically favored for a D-chiral residue, with 4 --> 1 type hydrogen bond linking L-Leu(3) NH with Boc CO. NMR analysis using temperature variation, solvent titration, and a spin probe study suggests a fully solvent-exposed nature of Dprg NH, ruling out a fully extended C(5)-type conformation for this residue, and solvent sequestered nature of L-Leu(3) NH, suggesting possibility of a beta-turn due to Dprg assuming a folded conformation.  相似文献   

11.
The importance of amino acid side-chains in helix stability has been investigated by making a series of mutations at the N-caps, C-caps and internal positions of the solvent-exposed faces of the two alpha-helices of barnase. There is a strong positional and context dependence of the effect of a particular amino acid on stability. Correlations have been found that provide insight into the physical basis of helix stabilization. The relative effects of Ala and Gly (or Ser) may be rationalized on the basis of solvent-accessible surface areas: burial of hydrophobic surface stabilizes the protein as does exposure to solvent of unpaired hydrogen bond donors or acceptors in the protein. There is a good correlation between the relative stabilizing effects of Ala and Gly at internal positions with the total change in solvent-accessible hydrophobic surface area of the folded protein on mutation of Ala----Gly. The relationship may be extended to the N and C-caps by including an extra term in hydrophilic surface area for the solvent exposure of the non-intramolecularly hydrogen-bonded main-chain CO, NH or protein side-chain hydrogen bonding groups. The requirement for solvent exposure of the C-cap main-chain CO groups may account for the strong preference for residues having positive phi and psi angles at this position, since this alpha L-conformation results in the largest solvent exposure of the C-terminal CO groups. Glycine in an alpha L-conformation results in the greatest exposure of these CO groups. Further, the side-chains of His, Asn, Arg and Lys may, with positive phi and psi-angles, form a hydrogen bond with the backbone CO of residue in position C -3 (residues are numbered relative to the C-cap). The preferences at the C-cap are Gly much greater than His greater than Asn greater than Arg greater than Lys greater than Ala approximately Ser approximately greater than Asp. The preferences at the N-cap are determined by hydrogen bonding of side-chains or solvent to the exposed backbone NH groups and are: Thr approximately Asp approximately Ser greater than Gly approximately Asn greater than Gln approximately Glu approximately His greater than Ala greater than Val much greater than Pro. These general trends may be obscured when mutation allows another side-chain to become a surrogate cap.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The crystal-state conformations of two octapeptides, pBrBz-(D-Iva)8-OtBu (8I) and Ac-[L-(alphaMe)Val]8-OH (8II), the heptapeptide Z-[L-(alphaMe)Val]7-OH (7), the hexapeptide Z-[L-(alphaMe)Leu]6-OtBu (6) and the tetrapeptide alkylamide Z-(Aib)2-L-Glu(OMe)-L-Ala-L-Lol (5) were assessed by x-ray diffraction analyses. Two independent molecules are observed in the asymmetric unit of each L-(alphaMe)Val homo-peptide. All four homo-peptides are folded in a regular 3(10)-helical structure (only the C-terminal H-bonded conformation of the D-Iva octapeptide is distorted to a type-I beta-turn). The hydroxyl groups of the C-terminal carboxyl moieties of the two L-(alphaMe)Val homo-peptides participate in an oxy-analogue of the type-III beta-turn conformation. While the two L-(alphaMe)Val 3(10)-helices are right-handed, the D-Iva and L-(alphaMe)Leu helices are left-handed. The tetrapeptide alkylamide is 3(10)-helical at the N-terminus, but it is mixed 3(10)/alpha-helical at the C-terminus.  相似文献   

13.
The depsipeptide Boc(1)-Leu(2)-Leu(3)-Ala(4)-Leu(5)-Leu(6)-Lac(7)-Leu(8)-Leu(9)-Lac(10)-Leu(11)-Leu(12)-Lac(13)-Leu(14)-Leu(15)-OEt(16) (1) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized from the peptide Boc-Leu-Leu-Ala-OEt (2) and a depsipeptide, Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (3). Single crystals of 1 were successfully obtained and the structure has been solved by direct methods (such as Sir2002 and Shake-and-Bake). Interestingly, 1 adopts an alpha/3(10)-conjugated helix containing a kink at the junction of peptide and depsipeptide segments, Leu3-Lac7. This is significantly different from the conformation of 3, which has a straight alpha-helical structure with standard phi and psi angles. Microcrystalline CD spectra were also studied to compare structural properties of 1 and 3. The differences between alpha/3(10)- and alpha-helices appear in these CD spectra.  相似文献   

14.
Peptides characterized by single or multiple N-methylated, C(alpha)-trisubstituted (e.g., protein) amino acids are of great interest in medicinal chemistry. Several naturally occurring peptides, remarkably stable to enzymatic attacks, are based on N-methylated residues. The classical conditions (CH(3)I/Ag(2)O in DMF, 24 h, room temperature) for N-methylation of the peptide function are useful tools for distinguishing solvent exposed from intramolecularly H-bonded -CO-NH- groups in peptides. In this work we have extended this reaction to N(alpha)-acylated, linear peptides based exclusively on helicogenic C(alpha)-tetrasubstituted alpha-amino acids, e.g., Aib (alpha-aminoisobutyric acid) or (alphaMe)Nva (C(alpha)-methyl norvaline) residues. Under the experimental conditions used, only amide monomethylation (on the N-terminal, acylated, residue) takes place. Methylation of internal peptide groups linking two C(alpha)-tetrasubstituted residues was not observed. Our FT-IR absorption, NMR, and X-ray diffraction investigations support the view that the beta-turn and 3(10)-helical conformations preferred by the original peptides are not dramatically perturbed in the derivatives monomethylated at position 1. In particular, the tertiary amide bonds are trans. Conversely, the packing modes in the crystals are strongly influenced by the reduction of the number of H-bonding donors. The MeXxx-Xxx peptide bond is readily disrupted under mild acidic conditions.  相似文献   

15.
We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the backbone (phi,psi) angles from two backbone vectors in consecutive peptide planes. These equations make it possible to compute, exactly and in constant time, the backbone (phi,psi) angles for a residue from RDCs in two media on any single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determining a protein backbone substructure consisting of alpha-helices and beta-sheets. Our algorithm employs a systematic search technique to refine the conformation of both alpha-helices and beta-sheets and to determine their orientations using exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very sparse distance restraints between pairs of alpha-helices and beta-sheets refined by the systematic search. The algorithm has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds and four NOE distance restraints. Further, our results show that both the global orientations and the conformations of alpha-helices and beta-strands can be determined with high accuracy using only two RDCs per residue. The algorithm requires, as its input, backbone resonance assignments, the identification of alpha-helices and beta-sheets as well as sparse NOE distance and hydrogen bond restraints.  相似文献   

16.
非解朊栖热菌HG102耐热β-糖苷酶的结构与功能研究   总被引:3,自引:1,他引:3  
非解朊栖热菌HG10 2耐热 β-糖苷酶为 (β/α)8桶状结构 ,是具有水解功能和转糖苷功能的单体酶。该酶可以作为一个很好的模型来研究糖苷酶的反应机制、底物特异性和耐热的分子基础。根据对该酶的晶体结构解析和同家族酶的结构比较 ,推测Glu164和Glu338分别是质子供体和亲核基团两个活性位点 ;在α-螺旋N端第一位的脯氨酸和蛋白质外周的精氨酸是耐热机制的关键位点和关键氨基酸残基。为确定这些氨基酸残基的功能 ,通过基因定点突变的方法分别把Glu164、Glu338、Pro316、Pro356、Pro344和Arg325置换成Gln、Ala、Gly、Ala、Phe和Leu ,同时还对Pro316和Pro356进行了双置换。突变酶经过纯化得到电泳纯 ,用CD光谱进行了野生酶和突变酶的结构比较。通过突变酶的酶功能和酶学性质分析 ,结果表明Glu164和Glu338分别是质子供体和亲核基团 ,亲核基团的突变酶TnglyE338A可以合成混合型糖苷键寡糖类似物 ;在α-螺旋N端第一位的Pro316和Pro356以及在蛋白质外周形成离子键的Arg325均是对耐热性有贡献的关键氨基酸残基。  相似文献   

17.
A mechanism by which ligand binding to the extracellular domain of a growth factor receptor causes activation of its cytoplasmic tyrosine kinase domain is that binding promotes receptor dimerization. Recently we proposed a model in which dimerization of the transmembrane alpha-helices in one member of this family, rat neu, is mediated by the presence of three specific residues. This paper shows that a similar sequence motif is observed in 18 of the 20 transmembrane alpha-helices of the tyrosine kinase family of growth factor receptors. The motif encompasses a five residue segment in which position 0 (P0) requires a small side chain (Gly, Ala, Ser, Thr or Pro), P3 an aliphatic side chain (Ala, Val, Leu or Ile) and P4 only the smallest side chains (Gly or Ala). In addition other features of the transmembrane sequences are reported. It is concluded that the dimerization of transmembrane alpha-helices may be a general mechanism of tyrosine kinase activation in this family of growth factor receptors.  相似文献   

18.
The shortest helices (three-length 3(10) and four-length alpha), most abundant among helices of different lengths, have been analyzed from a database of protein structures. A characteristic feature of three-length 3(10)-helices is the shifted backbone conformation for the C-terminal residue (phi,psi angles: -95 degrees,0 degrees ), compared to the rest of the helix (-62 degrees,-24 degrees ). The deviation can be attributed to the release of electrostatic repulsion between the carbonyl oxygen atoms at the two C-terminal residues and further stabilization (due to a more linear geometry) of an intrahelical hydrogen bond. A consequence of this non-canonical C-terminal backbone conformation can be a potential origin of helix kinks when a 3(10)-helix is sequence-contiguous at the alpha-helix N-terminal. An analysis of hydrogen bonding, as well as hydrophobic interactions in the shortest helices shows that capping interactions, some of them not observed for longer helices, dominate at the N termini. Further, consideration of the distribution of amino acid residues indicates that the shortest helices resemble the N-terminal end of alpha-helices rather than the C terminus, implying that the folding of helices may be initiated at the N-terminal end, which does not get propagated in the case of the shortest helices. Finally, pairwise comparison of beta-turns and the shortest helices, based on correlation matrices of site-specific amino acid composition, and the relative abundance of these short secondary structural elements, leads to a helix nucleation scheme that considers the formation of an isolated beta-turn (and not an alpha-turn) as the helix nucleation step, with shortest 3(10)-helices as intermediates between the shortest alpha-helix and the beta-turn. Our results ascribe an important role played by shortest 3(10)-helices in proteins with important structural and folding implications.  相似文献   

19.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The i + 5-->i hydrogen bonded turn conformation (pi-turn) with the fifth residue adopting alpha L conformation is frequently found at the C-terminus of helices in proteins and hence is speculated to be a "helix termination signal." An analysis of the occurrence of i + 5-->i hydrogen bonded turn conformation at any general position in proteins (not specifically at the helix C-terminus), using coordinates of 228 protein crystal structures determined by X-ray crystallography to better than 2.5 A resolution is reported in this paper. Of 486 detected pi-turn conformations, 367 have the (i + 4)th residue in alpha L conformation, generally occurring at the C-terminus of alpha-helices, consistent with previous observations. However, a significant number (111) of pi-turn conformations occur with (i + 4)th residue in alpha R conformation also, generally occurring in alpha-helices as distortions either at the terminii or at the middle, a novel finding. These two sets of pi-turn conformations are referred to by the names pi alpha L and pi alpha R-turns, respectively, depending upon whether the (i + 4)th residue adopts alpha L or alpha R conformations. Four pi-turns, named pi alpha L'-turns, were noticed to be mirror images of pi alpha L-turns, and four more pi-turns, which have the (i + 4)th residue in beta conformation and denoted as pi beta-turns, occur as a part of hairpin bend connecting twisted beta-strands. Consecutive pi-turns occur, but only with pi alpha R-turns. The preference for amino acid residues is different in pi alpha L and pi alpha R-turns. However, both show a preference for Pro after the C-termini. Hydrophilic residues are preferred at positions i + 1, i + 2, and i + 3 of pi alpha L-turns, whereas positions i and i + 5 prefer hydrophobic residues. Residue i + 4 in pi alpha L-turns is mainly Gly and less often Asn. Although pi alpha R-turns generally occur as distortions in helices, their amino acid preference is different from that of helices. Poor helix formers, such as His, Tyr, and Asn, also were found to be preferred for pi alpha R-turns, whereas good helix former Ala is not preferred. pi-Turns in peptides provide a picture of the pi-turn at atomic resolution. Only nine peptide-based pi-turns are reported so far, and all of them belong to pi alpha L-turn type with an achiral residue in position i + 4. The results are of importance for structure prediction, modeling, and de novo design of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号