首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many legumes, including Lotus japonicus and Medicago truncatula, susceptible root hairs are the primary sites for the initial signal perception and physical contact between the host plant and the compatible nitrogen-fixing bacteria that leads to the initiation of root invasion and nodule organogenesis. However, diverse mechanisms of nodulation have been described in a variety of legume species that do not rely on root hairs. To clarify the significance of root hairs during the L. japonicus-Mesorhizobium loti symbiosis, we have isolated and performed a detailed analysis of four independent L. japonicus root hair developmental mutants. We show that although important for the efficient colonization of roots, the presence of wild-type root hairs is not required for the initiation of nodule primordia (NP) organogenesis and the colonization of the nodule structures. In the genetic background of the L. japonicus root hairless 1 mutant, the nodulation factor-dependent formation of NP provides the structural basis for alternative modes of invasion by M. loti. Surprisingly, one mode of root colonization involves nodulation factor-dependent induction of NP-associated cortical root hairs and epidermal root hairs, which, in turn, support bacterial invasion. In addition, entry of M. loti through cracks at the cortical surface of the NP is described. These novel mechanisms of nodule colonization by M. loti explain the fully functional, albeit significantly delayed, nodulation phenotype of the L. japonicus ROOT HAIRLESS mutant.  相似文献   

2.
Schmidt W  Schikora A 《Plant physiology》2001,125(4):2078-2084
Low bioavailability of phosphorus (P) and iron (Fe) induces morphogenetic changes in roots that lead to a higher surface-to-volume ratio. In Arabidopsis, an enlargement in the absorptive surface area is achieved by an increase in the length and frequency of hairs in roots of Fe- and P-deficient plants. The extra root hairs are often located in positions that are occupied with non-hair cells under normal conditions, i.e. over a tangential wall of underlying cortical cells. An involvement of auxin and ethylene in root epidermis cell development of Fe- and P-deficient plants was inferred from phenotypical analysis of hormone-related Arabidopsis mutants and from the application of substances that interfere with either synthesis, transport, or perception of the hormones. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-D caused a marked increase in root hair density in plants of all growth types and confers a phenotype characteristic of ethylene-overproducing mutants. Hormone insensitivity and application of hormone antagonists inhibited the initiation of extranumerary root hairs induced by Fe deficiency, but did not counteract the formation of extra hairs in response to P deprivation. A model is presented summarizing putative pathways for alterations in root epidermal cell patterning induced by environmental stress.  相似文献   

3.
Recent studies from our laboratory have found that a root lectin from the legume Dolichos biflorus is present on the root surface, binds rhizobial Nod factor and has apyrase activity. To assess the broader significance of this lectin/nucleotide phosphohydrolase (Db-LNP), we have cloned a second related cDNA (Db-apyrase-2) from D. biflorus, as well as related cDNAs from the legumes Lotus japonicus and Medicago sativa, and from Arabidopsis thaliana, a non-legume. The deduced amino acid sequences of these apyrases were aligned with one another and with the sequences of other apyrases from plants, animals, yeast and protozoa. Phylogenetic analysis shows that Db-LNP has closely related orthologs only in other legumes, while Db-apyrase-2 is more closely related to apyrase sequences from non-leguminous plants. We also show that the orthologs of Db-LNP from M. sativa and Pisum sativum have carbohydrate binding activity. The results suggest that legume LNPs may represent a special class of apyrases that arose by gene duplication and subsequent specialization. Received: 11 March 1999 / Accepted: 14 June 1999  相似文献   

4.
The formation of nitrogen-fixing no dules on legume roots requires the coordination of infection by rhizobia at the root epidermis with the initiation of cell divisions in the root cortex. During infection, rhizobia attach to the tip of elongating root hairs which then curl to entrap the rhizobia. However, the mechanism of root hair deformation and curling in response to symbiotic signals is still elusive. Here, we found that small GTPases (MtRac1/MtROP9 and its homologs) are required for root hair development and rhizobial infection in Medicago truncatula. Our results show that the Nod factor receptor LYK3 phosphorylates the guanine nucleotide exchange factor MtRopGEF2 at S73 which is critical for the polar growth of root hairs. In turn, phosphorylated MtRopGEF2 can activate MtRac1. Activated MtRac1 was found to localize at the tips of root hairs and to strongly interact with LYK3 and NFP. Taken together, our results support the hypothesis that MtRac1, LYK3, and NFP form a polarly localized receptor complex that regulates root hair deformation during rhizobial infection.  相似文献   

5.
TWO TECHNIQUES WERE USED TO ASSESS THE BINDING OF RHIZOBIA TO CLOVER ROOTS: indirect counting after radiolabeling the bacteria and direct counting by using phase-contrast microscopy. Microscopic observations revealed a large variability in the number of bacteria associated with individual root hairs. This variability made unbiased counting by microscopy difficult. Systematic examination of all visible root hairs and "blind" counting of coded strains and treatments were adopted to minimize observer bias. The validity of the radiolabeling method was also examined in some detail. The reproducibility of results from this method was satisfactory. However, drawbacks of this method included its lack of sensitivity and its failure to distinguish between bacteria attached to mature root hairs, emerging root hairs, and undifferentiated epidermal cells. The method also failed to distinguish between individual bacteria and any aggregates that may be present. The ability of a number of chosen mutant strains of Rhizobium trifolii and their corresponding parent strains, as well as a number of nonhomologous strains, to bind to clover roots was assessed by using both of these methods. Our results gave no indication of specificity of R. trifolii binding to clover roots. 2-Deoxy-d-glucose did not appear to have a major inhibitory effect on the attachment of rhizobia to the host root, which suggests that lectin cross-bridging is not an obligatory step in the initiation of infection even though it may occur under some conditions. The presence or absence of the symbiotic plasmid was not correlated with bacterial adherence to the host plant root. Since host specificity functions are carried on this plasmid, our results suggest that binding of rhizobia to the legume root is not the basis of host specificity.  相似文献   

6.
Infection and subsequent nodulation of legume host plants by the root nodule symbiote Rhizobium leguminosarum usually require attachment of the bacteria to root-hair tips. Bacterial cellulose fibrils have been shown to be involved in this attachment process but appeared not to be essential for successful nodulation. Detailed analysis of Vicia sativa root-hair infection by wild-type Rhizobium leguminosarum RBL5523 and its cellulose fibril-deficient celE mutant showed that wild-type bacteria infected elongated growing root hairs, whereas cellulose-deficient bacteria infected young emerging root hairs. Exopolysaccharide-deficient strains that retained the ability to produce cellulose fibrils could also infect elongated root hairs but infection thread colonization was defective. Cellulose-mediated agglutination of these bacteria in the root-hair curl appeared to prevent entry into the induced infection thread. Infection experiments with V sativa roots and an extracellular polysaccharide (EPS)- and cellulose-deficient double mutant showed that cellulose-mediated agglutination of the EPS-deficient bacteria in the infection thread was now abolished and that infection thread colonization was partially restored. Interestingly, in this case, infection threads were initiated in root hairs that originated from the cortical cell layers of the root and not in epidermal root hairs. Apparently, surface polysaccharides of R. leguminosarum, such as cellulose fibrils, are determining factors for infection of different developmental stages of root hairs.  相似文献   

7.
Root-hair initiation in Arabidopsis thaliana provides a model for studying cell polarity and its role in plant morphogenesis. Root hairs normally emerge at the apical end of root epidermal cells, implying that these cells are polarized. We have identified a mutant, rhd6, that displays three defects: (a) a reduction in the number of root hairs, (b) an overall basal shift in the site of root-hair emergence, and (c) a relatively high frequency of epidermal cells with multiple root hairs. These defects implicate the RHD6 gene in root-hair initiation and indicate that RHD6 is normally associated with the establishment of, or response to, root epidermal cell polarity. Similar alterations in the site of root-hair emergence, although less extreme, were also discovered in roots of the auxin-, ethylene-, abscisic acid-resistant mutant axr2 and the ethylene-resistant mutant etr1. All three rhd6 mutant phenotypes were rescued when either auxin (indoleacetic acid) or an ethylene precursor (1-aminocyclopropane-1-carboxylic acid) was included in the growth medium. The rhd6 root phenotypes could be phenocopied by treating wild-type seedlings with an inhibitor of the ethylene pathway (aminoethoxyvinylglycine). These results indicate that RHD6 is normally involved in directing the selection or assembly of the root-hair initiation site through a process involving auxin and ethylene.  相似文献   

8.
Abstract The roots of pea (Pisum sativum L. ev. Feltham First) seedlings contained haemagglutinating activity and a protein which reacted with antibodies directed against pea seed lectin. This protein was shown to be present on the surface of root hairs and in the root cortical cells by immunofluorescence. Lectin (haemagglutinin) was purified from pea seedling roots by both immunoaffinity chromatography and affinity chromatography on Sephadex G-100. The pea root lectin was similar to the seed lectin when analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was antigenically identical: however, the isoelectric focussing band patterns of the proteins differed. The sugar specificity of the root lectin differed from that of the seed lectin, and the haemagglutinating activity of the root lectin was less than the seed lectin. These results are discussed with reference to the hypothesis that lectins mediate in the symbiotic association of legume and Rhizobium through their carbohydrate-binding properties.  相似文献   

9.
Arabidopsis thaliana root hairs grow longer and denser in response to low-phosphorus availability. In addition, plants with the root hair response acquire more phosphorus than mutants that have root hairs that do not respond to phosphorus limiting conditions. The purpose of this experiment was to determine the efficiency of root hairs in phosphorus acquisition at high- and low-phosphorus availability. Root hair growth, root growth, root respiration, plant phosphorus uptake, and plant phosphorus content of 3-wk-old wild-type Arabidopsis (WS) were compared to two root hair mutants (rhd6 and rhd2) under high (54 mmol/m) and low (0.4 mmol/m) phosphorus availability. A cost-benefit analysis was constructed from the measurements to determine root hair efficiency. Under high-phosphorus availability, root hairs did not have an effect on any of the parameters measured. Under low-phosphorus availability, wild-type Arabidopsis had greater total root surface area, shoot biomass, phosphorus per root length, and specific phosphorus uptake. The cost-benefit analysis shows that under low phosphorus, wild-type roots acquire more phosphorus for every unit of carbon respired or unit of phosphorus invested into the roots than the mutants. We conclude that the response of root hairs to low-phosphorus availability is an efficient strategy for phosphorus acquisition.  相似文献   

10.
Rhizobium-secreted nodulation factors are lipochitooligosaccharides that trigger the initiation of nodule formation on host legume roots. The first visible effect is root hair deformation, but the perception and signalling mechanisms that lead to this response are still unclear. When we treated Vicia sativa seedlings with mastoparan root hairs deformed, suggesting that G proteins are involved. To investigate whether mastoparan and Nod factor activate lipid signalling pathways initiated by phospholipase C (PLC) and D (PLD), seedlings were radiolabelled with [(32)P]orthophosphate prior to treatment. Mastoparan stimulated increases in phosphatidic acid (PA) and diacylglycerol pyrophosphate, indicative of PLD or PLC activity in combination with diacylglycerol kinase (DGK) and PA kinase. Treatment with Nod factor had similar effects, although less pronounced. The inactive mastoparan analogue Mas17 had no effect. The increase in PA was partially caused by the activation of PLD that was monitored by its in vivo transphosphatidylation activity. The application of primary butyl alcohols, inhibitors of PLD activity, blocked root hair deformation. Using different labelling strategies, evidence was provided for the activation of DGK. Since the PLC antagonist neomycin inhibited root hair deformation and the formation of PA, we propose that PLC activation produced diacylglycerol (DAG), which was subsequently converted to PA by DGK. The roles of PLC and PLD in Nod factor signalling are discussed.  相似文献   

11.
? The desert flora possesses diverse root architectures that result in fast growth in response to precipitation. We introduce the short root, a previously undescribed second-order root in the aridland chamaephyte Cryptantha flava, and explore fine root production. ? We describe the short root anatomy and associated fine roots, correlate standing fine root crop with soil moisture, and explore the architectural level - the short root, third-order lateral roots, or the whole root system - at which fine roots are induced by watering and the amount of water required. ? We show that short roots are borne at intervals on lateral roots and produce fine roots at their tips; new fine roots are white and have root hairs, while brown and black fine roots are apparently dead; and fine root production is triggered at the level of lateral roots and with relatively low precipitation (≤ 2 cm). ? Short roots are suberized and thus are probably not capable of water uptake themselves, but serve as initiation sites for fine roots that grow rapidly in response to rainfall. Thus, C. flava should be a beneficiary of projected precipitation increases in habitats where rainfall is pulsed.  相似文献   

12.
Root hairs are formed by two separate processes: initiation and subsequent tip growth. Root hair initiation is always accompanied by a highly localized increase in xyloglucan endotransglycosylase (XET) action at the site of future bulge formation, where the trichoblast locally loosens its cell wall. This suggests an important role of XET in the first stages of root hair initiation. The tip of growing root hairs is not marked by localized high XET action. Experiments in which root hair initiation was modulated and observations on root hair mutants support this view. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid shifts both root hair initiation and the local increase in XET action toward the root tip. On the other hand, roots treated with the ethylene inhibitor aminoethoxyvinyl-glycine, as well as roots of mutants affected in root hair initiation (rhl1, rhd6-1, and axr2-1) revealed no localized increases of XET action at all and consequently did not initiate root hairs. Disruption of actin and microtubules did not prevent the localized increase in XET action. Also, the temporal and spatial pattern of action as the specific pH dependence suggest that different isoforms of XET act in different processes of root development.  相似文献   

13.
White lupin (Lupinus albus) is a legume that is very efficient in accessing unavailable phosphorus (Pi). It develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report, we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and GPX-PDE2) from white lupin and propose a role for these two GPX-PDEs in root hair growth and development and in a Pi stress-induced phospholipid degradation pathway in cluster roots. Both GPX-PDE1 and GPX-PDE2 are highly expressed in Pi-deficient cluster roots, particularly in root hairs, epidermal cells, and vascular bundles. Expression of both genes is a function of both Pi availability and photosynthate. GPX-PDE1 Pi deficiency-induced expression is attenuated as photosynthate is deprived, while that of GPX-PDE2 is strikingly enhanced. Yeast complementation assays and in vitro enzyme assays revealed that GPX-PDE1 shows catalytic activity with glycerophosphocholine while GPX-PDE2 shows highest activity with glycerophosphoinositol. Cell-free protein extracts from Pi-deficient cluster roots display GPX-PDE enzyme activity for both glycerophosphocholine and glycerophosphoinositol. Knockdown of expression of GPX-PDE through RNA interference resulted in impaired root hair development and density. We propose that white lupin GPX-PDE1 and GPX-PDE2 are involved in the acclimation to Pi limitation by enhancing glycerophosphodiester degradation and mediating root hair development.  相似文献   

14.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   

15.
Background and AimsRoot proliferation is a response to a heterogeneous nutrient distribution. However, the growth of root hairs in response to heterogeneous nutrients and the relationship between root hairs and lateral roots remain unclear. This study aims to understand the effects of heterogeneous nutrients on root hair growth and the trade-off between root hairs and lateral roots in phosphorus (P) acquisition.MethodsNear-isogenic maize lines, the B73 wild type (WT) and the rth3 root hairless mutant, were grown in rhizoboxes with uniform or localized supply of 40 (low) or 140 (high) mg P kg−1 soil.ResultsBoth WT and rth3 had nearly two-fold greater shoot biomass and P content under local than uniform treatment at low P. Significant root proliferation was observed in both WT and rth3 in the nutrient patch, with the WT accompanied by an obvious increase (from 0.7 to 1.2 mm) in root hair length. The root response ratio of rth3 was greater than that of WT at low P, but could not completely compensate for the loss of root hairs. This suggests that plants enhanced P acquisition through complementarity between lateral roots and root hairs, and thus regulated nutrient foraging and shoot growth. The disappearance of WT and rth3 root response differences at high P indicated that the P application reduced the dependence of the plants on specific root traits to obtain nutrients.ConclusionsIn addition to root proliferation, the root response to a nutrient-rich patch was also accompanied by root hair elongation. The genotypes without root hairs increased their investment in lateral roots in a nutrient-rich patch to compensate for the absence of root hairs, suggesting that plants enhanced nutrient acquisition by regulating the trade-off of complementary root traits.  相似文献   

16.
The effect of root hairiness on fluid flow and oxygen transfer in hairy root cultures was investigated using wild-type, transgenic and root-hair mutants of Arabidopsis thaliana. The root hair morphologies of the A. thaliana lines were hairless, short hairs, moderately hairy (wild-type) and excessively hairy, and these morphologies were maintained after transformation of seedlings with Agrobacterium rhizogenes. Filtration experiments were used to determine the permeability of packed beds of roots; permeability declined significantly with increasing root hairiness as well as with increasing biomass density. Hairy roots of wild-type A. thaliana grew fastest with a doubling time of 6.9 days, but the hairless roots exhibited the highest specific oxygen uptake rate. In experiments using a gradientless packed bed reactor with medium recirculation, the liquid velocity required to eliminate external mass transfer boundary layer effects increased with increasing root hairiness, reflecting the greater tendency towards liquid stagnation near the surface of roots covered with hairs. External critical oxygen tensions also increased with increasing root hairiness, ranging from 50% air saturation for hairless roots to ca. 150% air saturation for roots with excessive root hairs. These results are consistent with root hairs providing a significant additional resistance to oxygen transfer to the roots, indicating that very hairy roots are more likely than hairless roots to become oxygen-limited in culture. This investigation demonstrates that root hairiness is an important biological parameter affecting the performance of root cultures and suggests that control over root hair formation, either by use of genetically modified plant lines or manipulation of culture conditions, is desirable in large-scale hairy root systems.  相似文献   

17.
18.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

19.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

20.
Staining of infected legume roots with 0.01% methylene blue facilitated the observation of the initial steps of the Rhizobium—legume symbiosis. It allowed particularly the visualization by bright-field microscopy of infection threads in the root hairs and the root cortex of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号