首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

2.
Expression of the proto-oncogene c-myc increases in the hemodynamically overloaded heart, but expression by cardiac myocytes has not been shown. To address this issue, right ventricular overload was induced in cats by pulmonary artery banding. Expression of c-myc and α-skeletal actin mRNA were determined by Northern analysis. Immuno-reactive Myc protein was identified by histochemical staining. Steady state levels of c-myc mRNA peaked within 2 h after banding. Levels of α-skeletal actin mRNA were maximally increased 48 h–1 week after banding and were still elevated at 1 month. Prominent staining of myocyte nuclei for immunoreactive Myc protein was detected 48 h after banding although a few interstitial nuclei were also positive. These studies show that c-myc and α-skeletal actin gene expression are upregulated in a large animal model of hemodynamic overload. The localization of the immunoreactive Myc protein to right ventricular myocyte nuclei after pulmonary artery banding supports the hypothesis that c-myc induction is part of a general response in cardiac hypertrophy that is common to many mammalian species.  相似文献   

3.
Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β(1)- (but not β(2)-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data provide both a specific etiology and a specific remedy for the abnormal microtubule network found in some forms of pathological cardiac hypertrophy.  相似文献   

4.
As a prelude to investigating the mechanism of regression of pressure overload-induced left ventricular (LV) hypertrophy (LVH), we studied the time course for the development and subsequent regression of LVH as well as accompanying alterations in cardiac function, histology, and gene expression. Mice were subjected to aortic banding for 4 or 8 wk to establish LVH, and regression was initiated by release of aortic banding for 6 wk. Progressive increase in LV mass and gradual chamber dilatation and dysfunction occurred after aortic banding. LVH was also associated with myocyte enlargement, interstitial fibrosis, and enhanced expression of atrial natriuretic peptide, collagen I, collagen III, and matrix metalloproteinase-2 but suppressed expression of alpha-myosin heavy chain and sarcoplasmic reticulum Ca(2+)-ATPase. Aortic debanding completely or partially reversed LVH, chamber dilatation and dysfunction, myocyte size, interstitial fibrosis, and gene expression pattern, each with a distinct time course. The extent of LVH regression was dependent on the duration of pressure overload, evidenced by the fact that restoration of LV structure and function was complete in animals subjected to 4 wk of aortic banding but incomplete in animals subjected to 8 wk of aortic banding. In conclusion, LVH regression comprises a variety of morphological, functional, and genetic components that show distinct time courses. A longer period of pressure overload is associated with a slower rate of LVH regression.  相似文献   

5.
Treatment with monocrotaline causes pulmonary hypertension in rats. This results in severe pressure overload-induced hypertrophy of the right ventricles, whilst the normally loaded left ventricles do not hypertrophy. Both ventricles are affected by enhanced neuroendocrine stimulation in this model. We analyzed in this model load-induced and catecholamine-induced changes of right and left ventricular proteome by two-dimensional gel electrophoresis, tryptic in-gel digest, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. All analyzed animals showed right ventricular hypertrophy without signs of heart failure. Changes of 27 proteins in the right and 21 proteins in the left ventricular myocardium were found. Given the hemodynamic features of this animal model, proteome changes restricted to the right ventricle are caused by pressure overload. We describe for the first time a potentially novel pathway (BRAP2/BRCA1) that is involved in myocardial hypertrophy. Furthermore, we demonstrate that increased afterload-induced hypertrophy leads to striking changes in the energy metabolism with down-regulation of pyruvate dehydrogenase (subunit beta E1), isocitrate dehydrogenase, succinyl coenzyme A ligase, NADH dehydrogenase, ubiquinol-cytochrome C reductase, and propionyl coenzyme A carboxylase. These changes go in parallel with alterations of the thin filament proteome (troponin T, tropomyosin), probably associated with Ca(2+) sensitization of the myofilaments. In contrast, neurohumoral stimulation of the left ventricle increases the abundance of proteins relevant for energy metabolism. This study represents the first in-depth analysis of global proteome alterations in a controlled animal model of pressure overload-induced myocardial hypertrophy.  相似文献   

6.
Angiotensin II and norepinephrine (NE) have been implicated in the neurohumoral response to pressure overload and the development of left ventricular hypertrophy. The purpose of this study was to determine the temporal sequence for activation of the renin-angiotensin and sympathetic nervous systems in the rat after 3-60 days of pressure overload induced by aortic constriction. Initially on pressure overload, there was transient activation of the systemic renin-angiotensin system coinciding with the appearance of left ventricular hypertrophy (day 3). At day 10, there was a marked increase in AT(1) receptor density in the left ventricle, increased plasma NE concentration, and elevated cardiac epinephrine content. Moreover, the inotropic response to isoproterenol was reduced in the isolated, perfused heart at 10 days of pressure overload. The affinity of the beta(2)-adrenergic receptor in the left ventricle was decreased at 60 days. Despite these alterations, there was no decline in resting left ventricular function, beta-adrenergic receptor density, or the relative distribution of beta(1)- and beta(2)-receptor sites in the left ventricle over 60 days of pressure overload. Thus activation of the renin-angiotensin system is an early response to pressure overload and may contribute to the initial development of cardiac hypertrophy and sympathetic activation in the compensated heart.  相似文献   

7.
Recent studies indicate that regression of left ventricular hypertrophy normalizes membrane ionic current abnormalities. This work was designed to determine whether regression of right ventricular hypertrophy induced by permanent high-altitude exposure (4,500 m, 20 days) in adult rats also normalizes changes of ventricular myocyte electrophysiology. According to the current data, prolonged action potential, decreased transient outward current density, and increased inward sodium/calcium exchange current density normalized 20 days after the end of altitude exposure, whereas right ventricular hypertrophy evidenced by both the right ventricular weight-to-heart weight ratio and the right ventricular free wall thickness measurement normalized 40 days after the end of altitude exposure. This morphological normalization occurred at both the level of muscular tissue, as shown by the decrease toward control values of some myocyte parameters (perimeter, capacitance, and width), and the level of the interstitial collagenous connective tissue. In the chronic high-altitude hypoxia model, the regression of right ventricular hypertrophy would not be a prerequisite for normalization of ventricular electrophysiological abnormalities.  相似文献   

8.
Angiotensin converting enzyme (ACE) inhibition has been reported to induce regression of hypertrophy in several models of hemodynamic pressure overload. The aim of the present study was to determine whether the ACE inhibitor captopril can reduce hypertrophy of the left ventricle induced by a chronic volume overload and modify collagen composition of the hypertrophied myocardium. Rabbits with four months lasting aortic insufficiency were divided into two groups: treated with captopril (20 mg/kg/day) for five weeks and treated with placebo. The respective control groups were represented by sham-operated animals. Aortic insufficiency induced a decrease of diastolic pressure, an increase of systolic and pulse pressure, hypertrophy of the left and right ventricle, and an increase of hydroxyproline content in the left ventricle without a change of hydroxyproline concentrations in either ventricle. Captopril treatment further enhanced pulse pressure by decreasing diastolic blood pressure. Hypertrophy of the left ventricle, hydroxyproline content and concentration in both ventricles were unaffected by captopril treatment. It is concluded that ACE inhibition did not reverse the left ventricular hypertrophy developed as a result of overload induced by aortic insufficiency. We suggest that mechanisms different from activation of the renin-angiotensin system may play a decisive role in the maintenance of hypertrophy in this particular model of volume hemodynamic overload.  相似文献   

9.
Recently, the presence of the chymase-dependent angiotensin (Ang) II-generating system in hamsters, dogs, monkeys, as well as human cardiovascular tissues has been identified. We have reported that the activation of cardiac chymase was more prominent than that of angiotensin converting enzyme (ACE) and that AT1 receptor antagonist treatment rather than ACE inhibitor treatment alone provided significant beneficial effects on cardiac function and survival after MI in hamsters. The aim of the present study was to determine whether this different effects between AT1 receptor antagonist and ACE inhibitor were due to the activation of cardiac chymase after MI in hamsters by using 4-[1-[[bis-(4-methyl-pheny)-methyl]-carbamoyl]-3-(2-ethoxy-benzyl)-4-oxo-azetidine-2-yloxy]-benzoic acid (BCEAB), a novel, orally active and specific chymase inhibitor. The ACE and chymase activities in the infarcted left ventricle were significantly increased 3 days after MI. BCEAB (100 mg/kg/day, p.o.) treatment starting 3 days before MI significantly suppressed the cardiac chymase activity, while it did not affect the plasma and cardiac ACE activities 3 days after MI. A significant improvement in hemodynamics (maximal negative and positive rates of pressure development; left ventricular systolic pressure) was observed for the treatment with BCEAB 3 days after MI. BCEAB (100 mg/kg/day, p.o.) treatment starting 3 days before MI significantly reduced the mortality rate during 14 days of observation following MI (vehicle, 61.1%, n = 18; BCEAB, 27.8%, n = 18; P < 0.05). These findings demonstrated for the first time that cardiac chymase participates directly in the pathophysiologic state after MI in hamsters.  相似文献   

10.

Background

Pulmonary arterial hypertension is characterized by increased pressure overload that leads to right ventricular hypertrophy (RVH). GPR91 is a formerly orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate; however, its role in RVH remains unknown.

Methods and Results

We investigated the role of succinate-GPR91 signaling in a pulmonary arterial banding (PAB) model of RVH induced by pressure overload in SD rats. GPR91 was shown to be located in cardiomyocytes. In the sham and PAB rats, succinate treatment further aggravated RVH, up-regulated RVH-associated genes and increased p-Akt/t-Akt levels in vivo. In vitro, succinate treatment up-regulated the levels of the hypertrophic gene marker anp and p-Akt/t-Akt in cardiomyocytes. All these effects were inhibited by the PI3K antagonist wortmannin both in vivo and in vitro. Finally, we noted that the GPR91-PI3K/Akt axis was also up-regulated compared to that in human RVH.

Conclusions

Our findings indicate that succinate-GPR91 signaling may be involved in RVH via PI3K/Akt signaling in vivo and in vitro. Therefore, GPR91 may be a novel therapeutic target for treating pressure overload-induced RVH.  相似文献   

11.
gp130, a common receptor for the interleukin 6 family, plays pivotal roles in growth and survival of cardiac myocytes. In the present study, we examined the role of gp130 in pressure overload-induced cardiac hypertrophy using transgenic (TG) mice, which express a dominant negative mutant of gp130 in the heart under the control of alpha myosin heavy chain promoter. TG mice were apparently healthy and fertile. There were no differences in body weight and heart weight between TG mice and littermate wild type (WT) mice. Pressure overload-induced increases in the heart weight/body weight ratio, ventricular wall thickness, and cross-sectional areas of cardiac myocytes were significantly smaller in TG mice than in WT mice. Northern blot analysis revealed that pressure overload-induced up-regulation of brain natriuretic factor gene and down-regulation of sarcoplasmic reticulum Ca(2+) ATPase 2 gene were attenuated in TG mice. Pressure overload activated ERKs and STAT3 in the heart of WT mice, whereas pressure overload-induced activation of STAT3, but not of ERKs, was suppressed in TG mice. These results suggest that gp130 plays a critical role in pressure overload-induced cardiac hypertrophy possibly through the STAT3 pathway.  相似文献   

12.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

13.
The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice.  相似文献   

14.
The Ca(2+) binding protein S100A1 increases the Ca(2+) release from the sarcoplasmatic reticulum by interacting with the ryanodine receptor. In order to understand whether this effect might be operative in the early course of hypertrophy, when myocardium is able to meet increased workload, we investigated the expression of S100A1 in a model of moderate right ventricular hypertrophy. The pulmonary arteries of nine pigs were embolised three times with Sephadex G-50. After 70 days, all pigs showed a moderate pulmonary hypertension. Right ventricular tissue of embolised animals showed a significant increase of connective tissue and enlargement of myocyte diameters. In controls, we found a differential expression of S100A1 with significantly lower S100A1 protein levels in right ventricular compared to left ventricular tissue. In pulmonary hypertension, S100A1 expression increased significantly in hypertrophied right ventricles while it was unchanged in left ventricular tissue. No change was observed in the expression of SERCA2a and phospholamban. Our data show, for the first time, that moderate pressure overload results in an upregulation of S100A1. This may reflect an adaptive response of myocardial Ca(2+) homeostasis to a higher workload.  相似文献   

15.
Heller LJ  Katz SA 《Life sciences》2000,66(15):1423-1433
To determine whether effects of angiotensin converting enzyme (ACE) inhibitors on well-established pressure overload-induced cardiac hypertrophy and coronary remodeling depend upon normal plasma renin levels, the influence of enalapril on ventricular mass and coronary vascular resistance (CVR) was determined in a low-renin female rat model of chronic pressure overload, (deoxycorticosterone acetate hypertension, DOCA), and compared to its effect in a normal-renin model, (aortic construction, AC). Six weeks after experiment initiation, plasma renin activity of DOCA-treated rats was reduced to approximately 12% that of sham-treated and AC-treated groups. Enalapril was then added to the drinking water of half the animals in each group for two additional weeks. Comparing experimental groups to controls, this delayed enalapril treatment had 1) no effect on the elevated arterial pressures, 2) no effect on the elevated coronary resistance, and, in the DOCA group, 3) no effect on cardiac hypertrophy. However, this brief enalapril treatment reduced absolute and relative ventricular weights of AC rats. These data suggest that circulating renin is required for the anti-hypertrophic efficacy of late-onset brief treatment with enalapril. Since enalapril-induced reversal of cardiac hypertrophy in AC rats was not accompanied by reversal of coronary remodeling, growth signals other than angiotensin II may be involved in coronary remodeling.  相似文献   

16.
Although it has been shown that Epac1 mRNA is expressed ubiquitously and Epac2 mRNA predominantly in the brain and endocrine tissues, developmental and pathophysiological changes of these molecules have not been characterized. Developmental changes were analyzed in murine heart, brain, kidneys, and lungs by RT-PCR analysis, which revealed more drastic developmental changes of Epac2 mRNA than Epac1. Only the Epac2 mRNA in kidney showed a transient expression pattern with dramatic decline into adulthood. In addition to developmental changes, we found that Epac gene expression was upregulated in myocardial hypertrophy induced by chronic isoproterenol infusion or pressure overload by transverse aortic banding. Both Epac1 and Epac2 mRNA were upregulated in isoproterenol-induced left ventricular hypertrophy, whereas only Epac1 was increased in pressure overload-induced hypertrophy. Stimulation of H9c2, cardiac myoblast cells, with fetal calf serum, which can induce myocyte hypertrophy, upregulated Epac1 protein expression. We also demonstrated that Epac was the limiting moiety, relative to Rap, in the Epac-Rap signaling pathway in terms of stoichiometry and that Epac stimulation led to the activation of ERK1/2. Our data suggest the functional involvement of Epac in organogenesis and also in physiological as well as pathophysiological processes, such as cardiac hypertrophy. Furthermore, our results suggest the importance of the stoichiometry of Epac over that of Rap in cellular biological effects.  相似文献   

17.
Chymase may play an important role in vascular proliferation, as shown by in-vitro experiments, but the role of chymase in vivo has been unclear. In this study, we investigated the effect of a novel chymase inhibitor, NK3201, on this proliferation in dog grafted veins. NK3201 inhibited human and dog chymases, but not rabbit ACE. NK3201 suppressed the Ang I-induced vascular contraction in isolated dog arteries in the presence of an ACE inhibitor, and the IC50 value of chymostatin and NK3201 in dog artery was 320 nM. In dog, the concentration of NK3201 in blood was about 10 microM at 24 h after oral administration of the drug (5 mg/kg). In the group treated with NK3201, each dog was administered orally 5 mg/kg per day from 5 days before to the day before the removal of the grafted veins. Each dog underwent right common carotid artery bypass grafting with the ipsilaterial external jugular vein. By 28 days after grafting, a significant vascular proliferation was observed in the grafted veins and the chymase activity was also increased significantly. Treatment with chymase inhibitor significantly suppressed the proliferation of the grafted veins and the increased chymase activity. In this study, we demonstrate for the first time that oral administration of a specific chymase inhibitor, NK3201, appears useful for preventing vascular proliferation.  相似文献   

18.
Left ventricular hypertrophy (LVH) is usually accompanied by intensive interstitial and perivascular fibrosis, which may contribute to arrhythmogenic sudden cardiac death. The mechanisms underlying the development of cardiac fibrosis are incompletely understood. To investigate the role of perivascular inflammation in coronary artery remodeling and cardiac fibrosis during hypertrophic ventricular remodeling, we used a well-established mouse model of LVH (transverse aortic constriction [TAC]). Three days after pressure overload, macrophages and T lymphocytes accumulated around and along left coronary arteries in association with luminal platelet deposition. Consistent with these histological findings, cardiac expression of IL-10 was upregulated and in the systemic circulation, platelet white blood cell aggregates tended to be higher in TAC animals compared to sham controls. Since platelets can dynamically modulate perivascular inflammation, we investigated the impact of thrombocytopenia on the response to TAC. Immunodepletion of platelets decreased early perivascular T lymphocytes' accumulation and altered subsequent coronary artery remodeling. The contribution of lymphocytes were examined in Rag1(-/-) mice, which displayed significantly more intimal hyperplasia and perivascular fibrosis compared to wild-type mice following TAC. Collectively, our studies support a role of early perivascular accumulation of platelets and T lymphocytes in pressure overload-induced inflammation.  相似文献   

19.
Cardiomyocyte hypertrophy differs according to the stress exerted on the myocardium. While pressure overload-induced cardiomyocyte hypertrophy is associated with depressed contractile function, physiological hypertrophy after exercise training associates with preserved or increased inotropy. We determined the activation state of myocardial Akt signaling with downstream substrates and fetal gene reactivation in exercise-induced physiological and pressure overload-induced pathological hypertrophies. C57BL/6J mice were either treadmill trained for 6 weeks, 5 days/week, at 85-90% of maximal oxygen uptake (VO(2max)), or underwent transverse aortic constriction (TAC) for 1 or 8 weeks. Total and phosphorylated protein levels were determined with SDS-PAGE, and fetal genes by real-time RT-PCR. In the physiologically hypertrophied heart after exercise training, total Akt protein level was unchanged, but Akt was chronically hyperphosphorylated at serine 473. This was accompanied by activation of the mammalian target of rapamycin (mTOR), measured as phosphorylation of its two substrates: the ribosomal protein S6 kinase-1 (S6K1) and the eukaryotic translation initiation factor-4E binding protein-1 (4E-BP1). Exercise training did not reactivate the fetal gene program (beta-myosin heavy chain, atrial natriuretic factor, skeletal muscle actin). In contrast, pressure overload after TAC reactivated fetal genes already after 1 week, and partially inactivated the Akt/mTOR pathway and downstream substrates after 8 weeks. In conclusion, changes in opposite directions of the myocardial Akt/mTOR signal pathway appears to distinguish between physiological and pathological hypertrophies; exercise training associating with activation and pressure overload associating with inactivation of the Akt/mTOR pathway.  相似文献   

20.
The rat model of myocardial infarction is characterized by progressive cardiac hypertrophy and failure. Rats with infarcts greater than 30% of the left ventricle exhibited early and moderate, stages of heart failure 4 and 8 weeks after the occlusion of the left coronary artery, respectively. As heart failure is usually associated with remodeling of the extracellular matrix, a histological and biochemical study of cardiac collagenous proteins was carried out using failing hearts. Total collagen content in the right ventricle increased at 2, 4, and 8 weeks following occlusion of the left coronary artery whereas such a change in viable left ventricle was seen after 4 and 8 weeks. Total cardiac hydroxyproline concentration was increased in both right and left ventricular samples from the infarcted animals when compared to those of control; this increase was due to elevation of pepsin-insoluble collagen fraction. The myocardial noncollagenous/collagenous protein ratio was decreased in experimental right and left ventricular samples when compared to control samples. These findings suggest that an increase in cross-linking of cardiac collagen as well as disparate synthesis of collagenous and noncollagenous proteins occurs in this model of congestive heart, failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号