首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Consequences of head size following trauma to the human head.   总被引:4,自引:0,他引:4  
The objective of the present study was to evaluate whether variation of human head size results in different outcome regarding intracranial responses following a direct impact. Finite Element models representing different head sizes and with various element mesh densities were created. Frontal impacts towards padded surfaces as well as inertial loads were analyzed. The variation in intracranial stresses and intracranial pressures for different sizes of the geometry and for various element meshes were investigated. A significant correlation was found between experiment and simulation with regard to intracranial pressure characteristics. The maximal effective stresses in the brain increased more than a fourfold, from 3.6kPa for the smallest head size to 16.3kPa for the largest head size using the same acceleration impulse. When simulating a frontal impact towards a padding, the head injury criterion (HIC) value varies from the highest level of 2433 at a head mass of 2.34kg to the lowest level of 1376 at a head mass of 5.98kg, contradicting the increase in maximal intracranial stresses with head size. The conclusion is that the size dependence of the intracranial stresses associated with injury, is not predicted by the HIC. It is suggested that variations in head size should be considered when developing new head injury criteria.  相似文献   

2.
In recent years, there has been a concerted effort for greater job safety in all industries. Personnel protective equipment (PPE) has been developed to help mitigate the risk of injury to humans that might be exposed to hazardous situations. The human head is the most vulnerable to impact as a moderate magnitude can cause serious injury or death. That is why industries have required the use of an industrial hard hat or helmet. There have only been a few articles published to date that are focused on the risk of head injury when wearing an industrial helmet. A full understanding of the effectiveness of construction helmets on reducing injury is lacking. This paper presents a simulation-based method to determine the threshold at which a human will sustain injury when wearing a construction helmet and assesses the risk of injury for wearers of construction helmets or hard hats. Advanced finite element, or FE, models were developed to study the impact on construction helmets. The FE model consists of two parts: the helmet and the human models. The human model consists of a brain, enclosed by a skull and an outer layer of skin. The level and probability of injury to the head was determined using both the head injury criterion (HIC) and tolerance limits set by Deck and Willinger. The HIC has been widely used to assess the likelihood of head injury in vehicles. The tolerance levels proposed by Deck and Willinger are more suited for finite element models but lack wide-scale validation. Different cases of impact were studied using LSTC's LS-DYNA.  相似文献   

3.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

4.
Computational models are important tools which help researchers understand traumatic brain injury (TBI). A mechanistic multi-scale numerical approach is introduced to quantify diffuse axonal injury (DAI), the most important mechanism of TBI, induced by a mechanical insult at micro-scale regions of the white matter or voxels where fiber orientations are the same. Using the mechanical properties of a single axon with a viscoelastic constitutive relation and its functional failure in terms of electrophysiological impairment, a numerical 2D micro-level lattice method is implemented to directly analyze the percentage of injured axons in a voxel containing a bundle of axons all with the same orientation under biaxial stretches. Reference micro-injury maps are then developed with the input parameters based on the principal strain or stretch values and their direction with respect to axons, which provide the percentage of injured axons in the voxel of interest as the output. The methodology is independent of any statistical analyses of the accident data and medical reports to derive probabilistic injury risk curves for DAI. Avoiding a structurally detailed full finite element head model, this study proposes a micro-mechanical approach which considers the anatomical structure of neural axons in the white matter together with their mechanical properties using a numerical lattice method to analyze the brain’s diffuse axonal injury. This work has the potential to help develop safer prevention tools and more effective diagnosis methods for DAI.  相似文献   

5.
Computational models are often used as tools to study traumatic brain injury. The fidelity of such models depends on the incorporation of an appropriate level of structural detail, the accurate representation of the material behavior, and the use of an appropriate measure of injury. In this study, an axonal strain injury criterion is used to estimate the probability of diffuse axonal injury (DAI), which accounts for a large percentage of deaths due to brain trauma and is characterized by damage to neural axons in the deep white matter regions of the brain. We present an analytical and computational model that treats the white matter as an anisotropic, hyperelastic material. Diffusion tensor imaging is used to incorporate the structural orientation of the neural axons into the model. It is shown that the degree of injury that is predicted in a computational model of DAI is highly dependent on the incorporation of the axonal orientation information and the inclusion of anisotropy into the constitutive model for white matter.  相似文献   

6.
The influence of the falx and tentorium on brain injury biomechanics during impact was studied with finite element (FE) analysis. Three detailed 3D FE head models were created based on the images of a healthy, normal size head. Two of the models contained the addition of falx and tentorium with material properties from previously published experiments. Impact loadings from a reconstructed concussive case in a sport accident were applied to the two players involved. The results suggested that the falx and tentorium could induce large strains to the surrounding brain tissues, especially to the corpus callosum and brainstem. The tentorium seemed to constrain the motion of the cerebellum while inducing large strain in the brainstem in both players involved in the accident (one player had mainly coronal head rotation and the other had both coronal and transversal rotations). Since changed strain levels were observed in the brainstem and corpus callosum, which are classical sites for diffuse axonal injuries (DAI), we confirmed the importance of using accurate material properties for falx and tentorium in a FE head model when studying traumatic brain injuries.  相似文献   

7.
An analytical model of traumatic diffuse brain injury   总被引:3,自引:0,他引:3  
Diffuse axonal injury (DAI) with prolonged coma has been produced in the primate using an impulsive, rotational acceleration of the head without impact. This pathophysiological entity has been studied subsequently from a biomechanics perspective using physical models of the skull-brain structure. Subjected to identical loading conditions as the primate, these physical models permit one to measure the deformation within the surrogate brain tissue as a function of the forces applied to the head. An analytical model designed to approximate these experiments has been developed in order to facilitate an analysis of the parameters influencing brain deformation. These three models together are directed toward the development of injury tolerance criteria based upon the shear strain magnitude experienced by the deep white matter of the brain. The analytical model geometry consists of a rigid, right-circular cylindrical shell filled with a Kelvin-Voigt viscoelastic material. Allowing no slip on the boundary, the shell is subjected to a sudden, distributed, axisymmetric, rotational load. A Fourier series representation of the load allows unrestricted load-time histories. The exact solution for the relative angular displacement (V) and the infinitesimal shear strain (epsilon) at any radial location in the viscoelastic material with respect to the shell was determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

9.
Jockey head injuries, especially concussions, are common in horse racing. Current helmets do help to reduce the severity and incidences of head injury, but the high concussion incidence rates suggest that there may be scope to improve the performance of equestrian helmets. Finite element simulations in ABAQUS/Explicit were used to model a realistic helmet model during standard helmeted rigid headform impacts and helmeted head model University College Dublin Brain Trauma Model (UCDBTM) impacts.

Current helmet standards for impact determine helmet performance based solely on linear acceleration. Brain injury-related values (stress and strain) from the UCDBTM showed that a performance improvement based on linear acceleration does not imply the same improvement in head injury-related brain tissue loads. It is recommended that angular kinematics be considered in future equestrian helmet standards, as angular acceleration was seen to correlate with stress and strain in the brain.  相似文献   

10.
Although the epidemiology and mechanics of concussion in sports have been investigated for many years, the biomechanical factors that contribute to mild traumatic brain injury remain unclear because of the difficulties in measuring impact events in the field. The purpose of this study was to validate an instrumented boxing headgear (IBH) that can be used to measure impact severity and location during play. The instrumented boxing headgear data were processed to determine linear and rotational acceleration at the head center of gravity, impact location, and impact severity metrics, such as the Head Injury Criterion (HIC) and Gadd Severity Index (GSI). The instrumented boxing headgear was fitted to a Hybrid III (HIII) head form and impacted with a weighted pendulum to characterize accuracy and repeatability. Fifty-six impacts over 3 speeds and 5 locations were used to simulate blows most commonly observed in boxing. A high correlation between the HIII and instrumented boxing headgear was established for peak linear and rotational acceleration (r2= 0.91), HIC (r2 = 0.88), and GSI (r2 = 0.89). Mean location error was 9.7 +/- 5.2 masculine. Based on this study, the IBH is a valid system for measuring head acceleration and impact location that can be integrated into training and competition.  相似文献   

11.
A computational head-neck model was developed to test the hypothesis that increases in friction between the head and impact surface will increase head and neck injury risk during near-axial impact. The model consisted of rigid vertebrae interconnected by assemblies of nonlinear springs and dashpots, and a finite element shell model of the skull. For frictionless impact surfaces, the model reproduced the kinematics and kinetics observed in near-axial impacts to cadaveric head-neck specimens. Increases in the coefficient of friction between the head and impact surface over a range from 0.0 to 1.0 resulted in increases of up to 40, 113, 9.8, and 43% in peak post-buckled resultant neck forces, peak moment at the occiput-C1 joint, peak resultant head accelerations, and HIC values, respectively. The most dramatic increases in injury-predicting quantities occurred for COF increases from 0.0 to 0.2, while further COF increases above 0.5 generally produced only nominal changes. These data suggest that safety equipment and impact environments which minimize the friction between the head and impact surface may reduce the risk of head and neck injury in near-vertex head impact.  相似文献   

12.
A gliding contusion in the acute phase is characterized by a streaklike hemorrhage of venous origin situated subcortically in a paramedial convolution. In later stages perivascular necrosis may develop. This type of injury is caused by head angular acceleration and is often seen in traffic casualties when the head has hit the steering wheel, the dashboard or the windshield.

The deformation of the brain matter close to the superior sagittal sinus has been simulated by means of a mathematical viscoelastic model in order to clarify the genesis of the gliding contusions. The blood vessels in the brain matter will be strained as a consequence of the brain deformation which results from head angular acceleration. The highest values of the strain occur subcortically where the blood vessels are injured first. The tolerance levels for gliding contusions have been determined. The calculations which were based on experiments regarding the dynamic properties of the superior cerebral veins and on two alternative injury criteria proposed, indicate that a gliding contusion is not likely to arise if the maximal angular acceleration does not exceed 4500 rad/sec2 or the change in angular velocity does not exceed 70 rad/sec.  相似文献   


13.
14.
Biomechanics and Modeling in Mechanobiology - The aim was to investigate mechanical and functional failure of diffuse axonal injury (DAI) in nerve bundles following frontal head impacts, by finite...  相似文献   

15.
The study of pediatric head injury relies heavily on the use of finite element models and child anthropomorphic test devices (ATDs). However, these tools, in the context of pediatric head injury, have yet to be validated due to a paucity of pediatric head response data. The goal of this study is to investigate the response and injury tolerance of the pediatric head to impact.Twelve pediatric heads were impacted in a series of drop tests. The heads were dropped onto five impact locations (forehead, occiput, vertex and right and left parietal) from drop heights of 15 and 30 cm. The head could freely fall without rotation onto a flat 19 mm thick platen. The impact force was measured using a 3-axis piezoelectric load cell attached to the platen.Age and drop height were found to be significant factors in the impact response of the pediatric head. The head acceleration (14%–15 cm; 103–30 cm), Head Injury Criterion (HIC) (253%–15 cm; 154%–30 cm) and impact stiffness (5800%–15 cm; 3755%–30 cm) when averaged across all impact locations increased with age from 33 weeks gestation to 16 years, while the pulse duration (66%–15 cm; 53%–30 cm) decreased with age. Increases in head acceleration, HIC and impact stiffness were also observed with increased drop height, while pulse duration decreased with increased drop height.One important observation was that three of the four cadaveric heads between the ages of 5-months and 22-months sustained fractures from the 15 cm and 30 cm drop heights. The 5-month-old sustained a right parietal linear fracture while the 11- and 22-month-old sustained diastatic linear fractures.  相似文献   

16.
Wang L  Cheung JT  Pu F  Li D  Zhang M  Fan Y 《PloS one》2011,6(10):e26490
Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6-7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE) models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury.  相似文献   

17.
目的:探讨脑弥漫性轴索损伤(DAI)的磁共振成像(MRI)征象及其与格拉斯哥昏迷量表评分(GCS)计分和预后的关系。方 法:回顾性分析2012 年1 月-2014 年7 月我院收集的30 例DAI 患者的临床病历资料,根据病灶累及部位分析其与GCS 计分和 临床预后的关系。结果:30 例患者共53 个病灶,17例多发病灶,13 例单发病灶;42 个病灶T1WI显示出低信号或者是等信号,11 个病灶T1WI显示为高信号;T2WI显示为高信号,FLAIR 序列以及弥散加权像(DWI)上表现出的信号更高,范围更清晰;病灶形 态呈条索状27 例,斑片状11 例,卵圆形8 例,不规则斑点状7 例;病灶未累及脑中线部位的患者临床预后优于病灶累及脑中线 部位的患者,差异有统计学意义(Z=-2.636,P=0.008),病灶累及脑中线部位的患者GCS 计分情况比未累及组严重,计分更低,差 异有统计学意义(Z=-2.519,P=0.012)。结论:DAI病灶累及脑中线部位的患者GCS计分较低、预后差,MRI检查是诊断DAI 首选 的影像学方法,临床有重要的参考价值。  相似文献   

18.

Objective

The purpose was to examine differences between taekwondo kicks and boxing punches in resultant linear head acceleration (RLA), head injury criterion (HIC15), peak head velocity, and peak foot and fist velocities. Data from two existing publications on boxing punches and taekwondo kicks were compared.

Methods

For taekwondo head impacts a Hybrid II Crash Dummy (Hybrid II) head was instrumented with a tri-axial accelerometer mounted inside the Hybrid II head. The Hybrid II was fixed to a height-adjustable frame and fitted with a protective taekwondo helmet. For boxing testing, a Hybrid III Crash Dummy head was instrumented with an array of tri-axial accelerometers mounted at the head centre of gravity.

Results

Differences in RLA between the roundhouse kick (130.11±51.67 g) and hook punch (71.23±32.19 g, d = 1.39) and in HIC15 (clench axe kick: 162.63±104.10; uppercut: 24.10±12.54, d = 2.29) were observed.

Conclusions

Taekwondo kicks demonstrated significantly larger magnitudes than boxing punches for both RLA and HIC.  相似文献   

19.

Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain–skull interaction. Nevertheless, the brain–skull interface has been largely simplified in previous three-dimensional head models without accounting for the fluid behaviour of the cerebrospinal fluid (CSF) and its mechanical interaction with the brain and skull. In this study, the brain–skull interface in a previously developed head model is modified as a fluid–structure interaction (FSI) approach, in which the CSF is treated on a moving mesh using an arbitrary Lagrangian–Eulerian multi-material formulation and the brain on a deformable mesh using a Lagrangian formulation. The modified model is validated against brain–skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain–skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain–skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.

  相似文献   

20.
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号