首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
"Suicide" inactivation occurs during catalysis by thromboxane synthase. Loss of enzymatic activity, accompanying thromboxane B2 formation, was proportional to the substrate concentration. Inactivation was directly related to product formation: for several different experimental protocols 50% loss of thromboxane synthase activity corresponded with formation of 454 +/- 79 ng of thromboxane B2/mg protein. The time course of inactivation was pseudo-first-order and obeyed saturation kinetics. Inactivation (KI) and first-order rate constants (ki) were 18 microM and 0.18 s-1 for prostaglandin H2. Prostaglandin H1, a poor substrate for turnover, was also a site-directed inactivator with KI = 28 microM and ki = 0.09 s-1. Competitive inhibitors, typified by U63557a and U46619, preserved the enzyme activity by slowing the rate of inactivation from 0.18 to 0.05 s-1. Loss of the hemoprotein Soret absorbance did not correlate quantitatively or temporally with the loss of thromboxane synthase activity. A similar, irreversible inactivation accompanied thromboxane formation by intact platelets. Loss of activity was proportional to substrate concentration and catalytic activity. For a pool of 25 separate donors, thromboxane synthase activity declined exponentially as a function of thromboxane B2 formation: 50% loss of activity corresponded to 23 ng of thromboxane B2/10(7) platelets. The data conform to criteria for a specific, mechanism-based process in which thromboxane synthase participates in two parallel reactions, one leading to thromboxane formation and the other to suicide inactivation. The specific, rather than indiscriminate, nature of the process, and its occurrence in intact platelets may have implications for the cell biology of thrombosis. Depletion of thromboxane synthase activity may be a factor in the choice and effectiveness of antithrombotic agents.  相似文献   

2.
X Zhang  A L Tsai  R J Kulmacz 《Biochemistry》1992,31(9):2528-2538
The role of histidine in catalysis by prostaglandin H synthase has been investigated using chemical modification with diethyl pyrocarbonate (DEPC), an agent that has been found to rather selectively derivatize histidine residues in proteins under mild conditions. Incubation of the synthase apoprotein with DEPC at pH 7.2 resulted in a progressive loss of the capacity for both cyclooxygenase and peroxidase catalytic activities. The kinetics of inactivation of the cyclooxygenase activity were dependent on the concentration of DEPC; a second-order rate constant of 680 M-1 min-1 was estimated for reaction of the apoenzyme at pH 7.2 and 0 degrees C. The kinetics of inactivation of the cyclooxygenase by DEPC exhibited a sigmoidal dependence on the pH, indicating that deprotonation of a group with a pKa of 6.3 was required for inactivation. The presence of the heme prosthetic group slowed, but did not prevent, inactivation by DEPC. The stoichiometry of histidine modification of apoenzyme during inactivation determined from absorbance increases at 242 nm agreed well with the overall stoichiometry of derivatized residues determined with [14C]DEPC, indicating that modification by DEPC was quite selective for histidine residues on the synthase. Although modification of several histidine residues by DEPC was observed, only one of the histidine residues was essential for cyclooxygenase activity. Modification of the holoenzyme with DEPC altered the EPR signal of the hydroperoxide-induced tyrosyl free radical from the wide doublet (35 G, peak-to-trough) found with the native synthase to a narrower singlet (28 G, peak-to-trough) quite like that found in the indomethacin-synthase complex. Reaction of the indomethacin-synthase complex with DEPC was found to increase the cyclooxygenase velocity by 9 times its initial value, to about one-third of the uninhibited value, without displacement of the indomethacin; the peroxidase was significantly inactivated under the same conditions. Histidyl residues in the synthase are thus likely to have important roles not only in cyclooxygenase and peroxidase catalysis but also in the interaction of the synthase with indomethacin.  相似文献   

3.
Y N Chen  L J Marnett 《FASEB journal》1989,3(11):2294-2297
The ability of aspirin to acetylate PGH synthase was determined by reacting [3H-acetyl]-aspirin with purified enzyme followed by high pressure liquid chromatography analysis of the protein components of the reaction mixture. Heme-reconstituted enzyme incorporated approximately one acetyl group per 70-kDa subunit, whereas apoprotein incorporated 0.1 acetyl group per subunit. The ability of the heme prosthetic group to enhance acetylation of the protein was correlated with its ability to protect the Arg253-Gly254 peptide bond from cleavage by trypsin. Thus, heme-induced alteration of protein conformation may contribute to the enhanced labeling of Ser506 by aspirin. The present results indicate that irreversible inactivation of prostaglandin H synthase by aspirin occurs only when the heme prosthetic group is bound to the protein. Considering its short in vivo half-life, it is likely that aspirin inactivates only the steady-state fraction of PGH synthase in a cell that is active but not newly synthesized apoprotein. This may contribute to the differential kinetics of inactivation and recovery of PGH synthase activity in platelets and vascular endothelial cells after administration of low dose aspirin as a prophylactic agent against cardiovascular disease.  相似文献   

4.
Prostaglandin H synthase apoprotein, without its prosthetic heme group, was inactivated by N-acetylimidazole under conditions typical for the O-acetylation of tyrosyl residues. A spontaneous reactivation occurred above pH 7.5 at 22 degrees C, which indicated spontaneous hydrolysis of acetylated residues. Below pH 7.5, where stable inactivation was observed, reactivation was achieved by reaction with hydroxylamine. Both enzymic activities of prostaglandin H synthase, cyclooxygenase and peroxidase, were inactivated and reactivated simultaneously and to the same extent. In contrast to the apoprotein, the holoenzyme with heme was not inactivated by N-acetylimidazole. The number of acetyl groups, as determined as hydroxamate after the reaction with hydroxylamine at pH 8.2, was 2.5 +/- 0.4 for the apoprotein and 1.0 +/- 0.24 for the holoenzyme. The specific binding of heme as the prosthetic group was no longer observed by EPR (signals at g = 6.7 and 5.3) when hemin was added to the N-acetylimidazole-reacted apoprotein. Treatment of N-acetylimidazole-reacted apoprotein with hydroxylamine restored the specific binding of heme. The N-acetylimidazole-reacted apoprotein supplemented with hemin and reacted with hydroperoxides, neither showed electronic absorption spectra of higher oxidation states nor an EPR doublet signal due to a tyrosyl radical. These results demonstrate that heme protects against the inactivating modification by N-acetylimidazole and that this modification prevents binding of the prosthetic heme group necessary for both enzymic activities. The absence of the prosthetic heme group explains the concomitant loss of cyclooxygenase and peroxidase activities, as well as the absence of higher oxidation states and the tyrosyl radical. We suggest that the acetylation of a residue in the heme pocket, most probably a tyrosine, although a histidine cannot be definitely disproved, exerts the inhibiting effects. This residue could be the axial ligand of the heme or in close contact to the heme. The results also show that the inhibition by N-acetylimidazole does not involve the acetylation of Ser530 which causes the inhibition by acetylsalicylic acid of cyclooxygenase. [The numbering of amino acids in ovine prostaglandin H synthase is according to DeWitt, D. L. and Smith, W. L. (1988) Proc. Natl Acad. Sci. USA 85, 1412-1416 including a signal peptide of 24 residues which is missing in the processed protein.  相似文献   

5.
We have purified the soluble form of guanylate cyclase from human placenta greater than 2400-fold. The enzyme shared several characteristics with the enzyme purified from other sources including molecular mass and subunit composition, activation by divalent cations, inhibition by ATP and Michaelis constants. The enzyme, however, had a lower absorption maximum in the Soret region (417 +/- 1 nm) than the enzyme from other sources and was activated only one-fifth as much by nitric oxide as the bovine lung enzyme. It appears that the heme prosthetic group in the human placental enzyme may be hexa-coordinate and in the bovine lung enzyme the heme group may be penta-coordinate.  相似文献   

6.
Treatment of prostaglandin H (PGH) synthase (70 kDa) with trypsin generates fragments of 33 and 38 kDa. Each of the fragments was purified by reverse-phase high performance liquid chromatography (HPLC) using acetonitrile/water/trifluoroacetic acid gradients. Amino acid sequence analysis indicates that the 33-kDa protein contains the NH2 terminus of PGH synthase. Neither the 33- nor 38-kDa fragment isolated by HPLC exhibits any PGH synthase activity; however, cleavage of intact enzyme to 33- and 38-kDa fragments to the extent of 90% only reduces cyclooxygenase activity by 40%. This implies that the cleaved proteins or a complex formed between them retains the conformation necessary for enzyme activity. Extensive attempts to resolve active fragments from each other or from intact enzyme were unsuccessful; intact enzyme and digestion fragments cochromatograph under all conditions employed. Treatment of PGH synthase with [3H]acetylsalicylic acid followed by trypsin digestion introduces [3H]acetyl moieties into the intact protein and the 38-kDa fragment (0.8-0.9 acetyl group/subunit). Nearly complete conversion of PGH synthase to 33- and 38-kDa fragments by exposure to high concentrations of trypsin prior to [3H]acetylsalicylic acid treatment results in labeling of the 38-kDa fragment, but not the 33-kDa fragment. The present findings are consistent with the presence of a membrane-binding domain (33 kDa) and an active site domain (38 kDa) in the 70-kDa subunit of PGH synthase. They also suggest that, following cleavage, the 38-kDa fragment retains the structural features responsible for the cyclooxygenase activity and selective aspirin labeling of PGH synthase. PGH synthase undergoes self-catalyzed inactivation by oxidants generated during its catalytic turnover. When PGH synthase, inactivated by treatment with arachidonic acid or hydrogen peroxide, was treated with trypsin it was cleaved two to three times faster than unoxidized enzyme. Addition of heme to oxidized PGH synthase did not reconstitute cyclooxygenase activity or resistance to trypsin cleavage. Spectrophotometric studies demonstrated that oxidatively inactivated enzyme did not bind heme. This implies that oxidation of protein residues as well as the heme prosthetic group is an important determinant of proteolytic sensitivity. Oxidative modification may mark PGH synthase for proteolytic cleavage and turnover.  相似文献   

7.
Prostaglandins and NO. are important mediators of inflammation and other physiological and pathophysiological processes. Continuous production of these molecules in chronic inflammatory conditions has been linked to development of autoimmune disorders, coronary artery disease, and cancer. There is mounting evidence for a biological relationship between prostanoid biosynthesis and NO. biosynthesis. Upon stimulation, many cells express high levels of nitric oxide synthase (NOS) and prostaglandin endoperoxide synthase (PGHS). There are reports of stimulation of prostaglandin biosynthesis in these cells by direct interaction between NO. and PGHS, but this is not universally observed. Clarification of the role of NO. in PGHS catalysis has been attempted by examining NO. interactions with purified PGHS, including binding to its heme prosthetic group, cysteines, and tyrosyl radicals. However, a clear picture of the mechanism of PGHS stimulation by NO. has not yet emerged. Available studies suggest that NO. may only be a precursor to the molecule that interacts with PGHS. Peroxynitrite (from O2.-+NO.) reacts directly with PGHS to activate prostaglandin synthesis. Furthermore, removal of O2.- from RAW 267.4 cells that produce NO. and PGHS inhibits prostaglandin biosynthesis to the same extent as NOS inhibitors. This interaction between reactive nitrogen species and PGHS may provide new approaches to the control of inflammation in acute and chronic settings.  相似文献   

8.
Thromboxane synthase from human platelets was purified to apparent homogeneity by conventional chromatographic techniques. A 423-fold enrichment over the specific content in the 100,000 X g sediment from platelet homogenates was obtained. The enzyme gave a single band on sodium dodecyl sulfate-gel electrophoresis corresponding to a monomeric molecular weight of 58,800. One heme per polypeptide chain was present, and by optical and EPR spectroscopy a close analogy to the group of cytochrome P-450 proteins was established. From its substrate prostaglandin H2, the stable end product thromboxane B2 is formed with a specific activity of 24.1 mumol min-1 mg of protein-1 which corresponds to a molecular activity of 1628 min-1. The enzyme formed 12L-hydroxy-5,8,10-heptadecatrienoic acid together with thromboxane B2 in a 1:1 ratio. Both products were identified by gas chromatography-mass spectrometry analysis. As reported previously for platelet microsomes (Ullrich, V., and Haurand, M. (1983) Adv. Prostaglandin Thromboxane Leukotriene Res. 11, 105-110), the pure hemoprotein spectrally interacts with pyridine- or imidazole-based inhibitors and for the potent inhibitor imidazo-(1,5-a)pyridine-5-hexanoic acid a stoichiometric binding to the heme was shown. Substrate analogs with a methylene group replacing the oxygen in either the 9- or 11-position caused difference spectra showing spectral shifts towards 387 and 407 nm, respectively. The identification of thromboxane synthase as a P-450 protein suggests that the heme-thiolate group of the enzyme is required to split and activate the endoperoxide bond of prostaglandin H2.  相似文献   

9.
Manganese peroxidase (MnP), which normally oxidizes Mn2+ to Mn3+, is rapidly and completely inactivated in an H2O2-dependent reaction by 2 equivalents of sodium azide. The inactivation is paralleled by formation of the azidyl radical and high yield conversion of the prosthetic heme into a meso-azido adduct. The meso-azido enzyme is oxidized by H2O2 to a Compound II-like species with the Soret band red-shifted 2 nm relative to that of native Compound II. The time-dependent decrease in this Compound II-like spectrum (t1/2 = 2.3 h) indicates that the delta-meso azido heme is more rapidly degraded by H2O2 than the prosthetic heme of control enzyme (t1/2 = 4.8 h). MnP is also inactivated by phenyl-, methyl-, and ethylhydrazine. The phenylhydrazine reaction is too rapid for kinetic analysis, but KI = 402 microM and kinact = 0.22/min for the slower inactivation by methylhydrazine. Reaction with phenylhydrazine at pH 4.5 does not yield iron-phenyl, N-phenyl, or meso-phenyl heme adducts. Ethylhydrazine inactivates the enzyme both at pH 4.5 and 7.0, but only detectably produces delta-meso-ethyl-heme at pH 7.0. Reconstitution of apo-MnP with hemin or delta-meso-ethylheme yields enzyme with, respectively, 50 and 5% of the native activity. The delta-meso-alkyl group thus suppresses most of the catalytic activity of the enzyme even though a Compound II-like species is still formed with H2O2. Finally, Co2+ inhibits the enzyme competitively with respect to Mn2+ but does not inhibit its inactivation by azide or the alkylhydrazines. The results argue that substrates interact with the heme edge in the vicinity of the delta-meso-carbon. They also suggest that Mn2+ and Co2+ bind to a common site close to the delta-meso-carbon without blocking the approach of small molecules to the heme edge. An active site model is proposed that accommodates these results.  相似文献   

10.
Prostaglandin endoperoxide synthetase purified to apparent homogeneity from bovine vesicular gland microsomes contained iron far below the equimolar amount and essentially no heme. However, the enzyme required various metalloporphyrins including hematin or several hemoproteins such as hemoglobin. Preincubation of the enzyme with hematin or hemoglobin resulted in the loss of enzyme activity. The enzyme inactivation was protected by tryptophan or various other aromatic compounds. Furthermore, the simultaneous presence of tryptophan brought about activation of enzyme; namely, the enzyme preincubated with heme and tryptophan showed an almost full activity with a heme concentration in the reaction mixture far below the saturating level. Such inactivation and activation of the enzyme were also observed with manganese protoporphyrin. An identical heme requirement, heme-induced inactivation, and activation of the enzyme were observed in three types of reactions catalyzed by the enzyme: 1) bis-dioxygenation of 8,11,14-eicosatrienoic acid to produce prostaglandin G1, 2) 15-hydroperoxide cleavage of prostaglandin G1 to produce prostaglandin H1, and 3) guaiacol peroxidation. When heme was replaced by manganese protoporphyrin, the enzyme catalyzed only the bis-dioxygenation producing prostaglandin G1 and the activities of the latter two reactions were not detectable.  相似文献   

11.
Thromboxane synthase has been purified 620-fold from porcine lung microsomes by a three-step purification procedure including Lubrol-PX solubilization, reactive blue-agarose chromatography, and immunoaffinity chromatography. The purified enzyme exhibited a single protein band (53,000 daltons) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Rabbit antiserum raised against the purified enzyme immunoprecipitated thromboxane synthase activity from crude enzyme preparations of porcine lung, cow lung, and human platelets, indicating the existence of structural homology of the enzyme in these species. Immunoblotting experiment identified the same polypeptide (53,000 daltons) in porcine lung and a polypeptide of 50,000 daltons in human platelets, confirming the identity of the enzyme and the specificity of the antiserum. Purified thromboxane synthase is a hemoprotein with a Soret-like absorption peak at 418 nm. The enzyme reaction has a Km for 15-hydroxy-9 alpha, 11 alpha-peroxidoprosta-5, 13-dienoic acid of 12 microM, an optimal pH of 7.5, and an optimal temperature of reaction at 30 degrees C. Purified thromboxane synthase catalyzed the formation of both thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT). The ratios of HHT to thromboxane B2 varied from 1.6 to 2.1 dependent on the reaction conditions. Except that HHT was formed at a greater rate, the formation of HHT and that of thromboxane responded identically to pH, temperature, substrate concentration, kinetics of formation, metal ions, and inhibitors suggesting that the two products are probably formed at the same active site via a common intermediate. Thromboxane synthase was irreversibly inactivated by 15-hydroxy-9 alpha, 11 alpha-peroxidoprosta-5,13-dienoic acid during catalysis and by treatment of 15-hydroperoxyeicosatetraenoic acid. The irreversible inactivation, however, could be protected by reversible inhibitors such as sodium (E)-3-[4-(1-imidazolylmethyl)phenyl]-2-propenoate and 15-hydroxy-11 alpha,9 alpha-(epoxymethano)-prosta-5,13-dienoic acid, suggesting that the inactivation occurred at the active site of the enzyme. The catalytic inactivation of thromboxane synthase and the greater rate of formation of HHT in thromboxane-synthesizing system may probably play important regulatory roles in the control of thromboxane synthesis.  相似文献   

12.
Uracil analogues with appropriate substituents at the 5-position inactivated dihydropyrimidine dehydrogenase (DHPDHase). The efficiency of these inactivators was highly dependent on the size of the 5-substituent. For example, 5-ethynyluracil inactivated DHPDHase with an efficiency (kinact/Ki) that was 500-fold greater than that for 5-propynyluracil. 5-Ethynyluracil inactivated DHPDHase by initially forming a reversible complex with a Ki of 1.6 +/- 0.2 microM. This initial complex yielded inactivated enzyme with a rate constant of 20 +/- 2 min-1 (kinact). Thymine competitively decreased the apparent rate constant for inactivation of DHPDHase by 5-ethynyluracil. The absorbance spectrum of 5-ethylnyluracil-inactivated DHPDHase was different from that of reduced enzyme. These optical changes were correlated with the loss of enzymatic activity. 5-Ethynyluracil inactivated DHPDHase with a stoichiometry of 0.9 mol of inactivator per mol of active site. Enzyme inactivated with [2-14C]5-ethynyluracil retained all of the radiolabel after denaturation in 8 M urea, but lost radiolabel under acidic conditions. These results suggested that inactivation was due to covalent modification of an amino acid residue and not due to modification of a noncovalently bound prosthetic group. A radiolabeled peptide was isolated from a tryptic digest of the enzyme inactivated with [2-14C]5-ethynyluracil. The sequence of this peptide was Lys-Ala-Glu-Ala-Ser-Gly-Ala-Y-Ala-Leu-Glu-Leu-Asn-Leu-Ser-X-Pro-His-Gly- Met-Gly-Glu-Arg, where X and Y were unidentified amino acids. Since the radiolabel was lost from the peptide during the first cycle on the amino acid sequenator, the position of the radiolabeled amino acid was not determined. The amino acid residue designated by X was identified as a cysteine from previous work with DHPDHase inactivated with 5-iodouracil. In contrast to 5-ethynyluracil, 5-cyanouracil was a reversible inactivator of the enzyme. 5-Cyanouracil-inactivated enzyme slowly regained activity (t1/2 = 1.8 min) after dilution into the standard assay. DHPDHases isolated from rat, mouse, and human liver had similar sensitivities to inactivation by 5-alkynyluracils.  相似文献   

13.
Human platelet thromboxane synthase was partially purified by DEAE-cellulose, Affi-Gel Blue, and Sephacryl S-300 chromatography to a specific activity of 259 nmol of thromboxane B2/min per mg. Thromboxane synthase retained 75-90% of its enzymic activity when bound to phenyl-Sepharose. The immobilized enzyme was inactivated at pH 3.0 and inhibited by 1-benzylimidazole and U-63,557A. The ability of the enzyme to produce thromboxane A2 from prostaglandin H2 was dramatically reduced by multiple additions of prostaglandin H2. Our data suggest that the production of thromboxane A2 by the enzyme is self-limiting and that the enzyme is inactivated during the reaction.  相似文献   

14.
Prostaglandin H synthase. Stoichiometry of heme cofactor   总被引:3,自引:0,他引:3  
The stoichiometry of heme interaction with prostaglandin H synthase was determined by titration of the apoenzyme purified from sheep seminal vesicles. Maximal cyclooxygenase activity was reached when 0.53 +/- 0.11 (n = 6) heme/70,000-Da subunit had been added. Spectrophotometric titrations at 411 nm showed a transition when 0.53 +/- 0.04 (n = 5) heme/subunit had been added. The results from the titration end points were corroborated by comparison of the specific cyclooxygenase activity based on subunit concentration with the specific activity/mol of heme (calculated from the incremental increases in activity during the titration). The value based on subunit was approximately half (0.58 +/- 0.11; n = 6) that based on heme, consistent with one heme/two subunits. Analysis of synthase holoenzyme after chromatography on DEAE-cellulose provided validation for the concept that only one subunit needs to bind heme to give a catalytically active synthase dimer. Binding of some heme to the second subunit appears to be only coincidentally associated with complete saturation of the active subunit. Titrations of the synthase with Mn-protoporphyrin IX gave results which confirmed the presence of two high affinity metalloporphyrin sites/dimer. Unlike heme, two Mn-protoporphyrin IX need be bound per dimer to obtain full catalytic activity. Prostaglandin H synthase appears to have two high affinity binding sites for metalloporphyrins. The two sites have slightly different affinities for heme. The synthase dimer is capable of cyclooxygenase catalysis when the site with higher affinity is occupied by heme. The two subunits of the enzyme are thus not completely identical.  相似文献   

15.
Treatment of prostaglandin (PG)H synthase purified from ram seminal vesicle microsomes with trypsin cleaves the 70-kDa subunits into 33- and 38-kDa fragments (Chen, Y.-N. P., Bienkowski, M. J., and Marnett, L. J. (1987) J. Biol. Chem. 262, 16892-16899). In contrast to a minimal decrease in cyclooxygenase activity, peroxidase activity declines rapidly following trypsin treatment. The time course for loss of guaiacol peroxidase activity corresponds closely to the time course for protein cleavage. The ability of trypsin-treated enzyme to support catalytic reduction of 5-phenyl-4-pentenyl-1-hydroperoxide in the presence of reducing substrates is significantly reduced. The products of metabolism of 10-hydroperoxy-8,12-octadecadienoic acid indicate that trypsin-treated enzyme catalyzes homolytic scission of the hydroperoxide bond in contrast to the heterolytic scission catalyzed by intact enzyme. Spectrophotometric titrations of hematin addition to trypsin-treated PGH synthase indicate approximately a 50% reduction in heme binding. These observations suggest that trypsin treatment of PGH synthase decreases the ability of the protein to bind prosthetic heme at a site that controls peroxidase activity. Comparison of the N-terminal sequence of the 38-kDa fragment of trypsin-treated PGH synthase to the amino acid sequence of the intact protein indicates that cleavage occurs between Arg253 and Gly254. Based on literature precedents and the results of the present investigations, we propose that the heme prosthetic group that controls the peroxidase activity of PGH synthase binds to the His residue of the sequence His250-Tyr251-Pro252-Arg253 located immediately adjacent to the trypsin cleavage site.  相似文献   

16.
The membrane-bound prostaglandin endoperoxide synthetase was purified until homogeneity, starting from sheep vesicular glands. The enzyme was obtained as a complex with Tween-20, containing 0.69 mg detergent per mg protein. No residual phospholipid could be detected. Prostaglandin endoperoxide synthetase appeared to be a glycoprotein, containing mannose and N-acetyl-glucosamine. No haemin or metal atoms were present. A molecular weight of 126 000 was found for the apoprotein by ultracentrifugation in 0.1% Tween solutions. The polypeptide chain without carbohydrate had a molecular weight of 69 000 as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The pure enzyme displays both cyclooxygenase and peroxidase activity, thus converting arachidonic acid into prostaglandin H2. The isolated synthetase requires haemin, which possibly acts as an easily dissociable prosthetic group, and a suitable hydrogen donor to protect the enzyme from peroxide inactivation and which is consumed in stoichiometric amounts to reduce the intermediate hydroperoxy group.  相似文献   

17.
An H2O2-requiring oxygenase found in the extracellular medium of ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium was purified by DEAE-Sepharose ion-exchange chromatography and gel filtration on Sephadex G-100. Sodium dodecyl sulfate (SDS)-disc gel electrophoresis indicated that the purified protein was homogeneous. The Mr of the enzyme as determined by gel filtration and SDS-polyacrylamide gel electrophoresis was 41,000. The absorption spectrum of the enzyme indicated the presence of a heme prosthetic group. The absorption maximum of the native enzyme (407 nm) shifted to 435 nm in the reduced enzyme and to 420 nm in the reduced-CO complex. The pyridine hemochrome absorption spectrum indicated that the enzyme contained one molecule of heme as iron protoporphyrin IX. Both CN- and N-3 bound readily to the native enzyme, indicating an available coordination site and that the heme iron was high spin. The purified enzyme generated ethylene from 2-keto-4-thiomethyl butyric acid, and oxidized a variety of lignin model compounds, including the diarylpropane, 1-(3'4'-diethoxyphenyl)1,3-dihydroxy-2-(4"-methoxyphenyl)propane (I); a beta-ether dimer, 1-(4'-ethoxy-3'-methoxyphenyl)glycerol-beta-guaiacyl ether (V); an olefin, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2 propene (III); and a diol, 1-(4'-ethoxy-3'-methoxyphenyl)-1,2-propane diol (IV). The products found were equivalent to the metabolic products previously isolated from intact ligninolytic cultures.  相似文献   

18.
Purified, apoprostaglandin synthetase was prepared from sheep vesicular gland and studied in terms of its heme-binding properties. The enzyme binds a single heme group per enzyme monomer, Mr = 70,000. When reconstituted with heme, the enzyme has an absorption maximum at 412 nm and an absorption coefficient, epsilon 412 nm, of 120 mM-1 cm-1. The binding of heme to the apoenzyme was accompanied by a proportional increase in enzyme activity up to the point of heme-binding saturation. This reconstituted holoenzyme forms prostaglandin H2 from arachidonate. We conclude that prostaglandin synthetase possesses the heme-binding properties of a "typical" heme protein and that a single heme group mediates both the oxygenase and the peroxidase activities of the enzyme.  相似文献   

19.
The sensitivity of the apo- and holoenzyme forms of prostaglandin H synthase to trypsin have been investigated. Both the cyclooxygenase and peroxidase activities associated with the synthase were rapidly lost from the apoenzyme when incubated with trypsin. However, both activities were resistant to trypsin in the holoenzyme, suggesting that some structural change accompanies heme binding. Inactive protein present in some holoenzyme preparations, although indistinguishable from the synthase subunit by polyacrylamide gel electrophoresis, was also hydrolyzed by trypsin.  相似文献   

20.
The acetylenic substrate, D-2-amino-4-pentynoic acid (D-propargylglycine), was oxidatively deaminated by hog kidney D-amino acid oxidase[EC 1.4.3.3], with accompanying inactivation of the enzyme. The flavin which was extracted by hot methanol from the inactivated enzyme was identical with authentic FAD by thin-layer chromatography and circular dichroism. The excitation spectrum of emission at 520 nm of the released flavin was very similar to the absorption spectrum of oxidized FAD. The released flavin was reduced by potassium borohydride. The apoenzyme prepared after propargylglycine treatment did not show restored D-amino acid oxidase activity on adding exogenous FAD. The absorption spectrum of this inactivated apoenzyme showed absorption peaks at 279 and 317 nm, and a shoulder at about 290 nm. These results strongly indicate that the inactivation reaction is a dynamic affinity labeling with D-propargylglycine which produces irreversible inactivation of the enzyme by a covalent modification of an amino acid residue at the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号