首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A large body of evidence suggests that disturbances of Ca2+ homeostasis may be a causative factor in the neurotoxicity induced by excitatory amino acids (EAAs). The route or routes by which an increase in intracellular calcium concentration ([Ca2+]i) is mediated in vivo are presently not clarified. This may partly reflect the complexity of intact nervous tissue in combination with the relative unspecific action of the available “calcium antagonists,” e.g., blockers of voltage-sensitive calcium channels. By using primary cultures of cortical neurons as a model system, it has been found that all EAAs stimulate increases in [Ca2+]i but via different mechanisms. By using the drug dantrolene, it has been shown that 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) apparently exclusively stimulates Ca2+ influx through agonist-operated calcium channels and voltage-operated calcium channels. Increased [Ca2+]i due to exposure to kainate (KA) is for the major part caused by influx, as in the case of AMPA, but a small part of the increase in [Ca2+]i may be attributed to a release of Ca2+ from intracellular stores. Quisqualate (QA) stimulates Ca2+ release from an intracellular store that is independent of Ca2+ influx; presumably this store is activated by inositol phosphates. The increase in [Ca2+]i due to exposure to glutamate or N-methyl-d -aspartate (NMDA) may be compartmentalized into three components, one of which is related to influx and the other two to Ca2+ release from internal stores. Only one of the latter stores is dependent on Ca2+ influx with regard to release of Ca2+, whereas the other is activated by some other second messengers or, alternatively, directly coupled to the receptor. In muscles dantrolene is known to inhibit Ca2+ release from the sarcoplasmic reticulum, and also in neurons dantrolene inhibits an equivalent release from one or more hitherto unidentified internal Ca2+ pool(s). By using this drug it has been possible to show to what extent these Ca2+ stores are involved in the toxicity observed subsequent to exposure to the EAAs. It turned out that dantrolene, even under conditions allowing Ca2+ influx, inhibited toxicity induced by QA, NMDA, and glutamate, whereas that induced by AMPA or KA was unaffected. In combination with the findings that dantrolene inhibited release from the intracellular stores activated by QA, NMDA, and glutamate, it may be concluded that Ca2+ influx per se is not the primary event causing toxicity following exposure to these EAAs in these neurons. However, it may certainly be involved in the cases of toxicity induced by AMPA and KA. Finally, it should be pointed out that this model only serves as a much simplified working hypothesis and that the situation in vivo is much more complex.  相似文献   

2.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

3.
The basic mechanisms of regulation of Ca2+ influx have been studied in murine myoblasts proliferating and differentiating in culture. The presence of L-type Ca2+ channels in proliferating myoblasts is shown for the first time. It is also shown that the influx of Ca2+ through these channels is regulated by the adrenergic system. The influx of Ca2+ after activation of the adrenergic system by addition of adrenaline has been estimated in comparison with the contribution of reticular stocks exhausted by ATP in calcium-free medium. The Ca2+ influx in proliferating myoblasts is regulated by β-2 adrenergic receptors whose action is mediated by adenylate cyclase through L-type calcium channels. In differentiating myoblasts, the adrenaline-induced Ca2+ influx is substantially lower than in proliferating cells, and maximal influx of Ca2+ may be reached only upon exhaustion of reticular stocks.  相似文献   

4.
The correlation between an increased production of reactive oxygen species (ROS) and an enhanced calcium entry in primed neutrophils stimulated with fMLP suggests that endogenous ROS could serve as an agonist to reinforce calcium signaling by positive feedback. This work shows that exogenous H2O2 produced a rapid influx of Mn2+ and an increase of intracellular calcium. The H2O2 was insufficient to produce significant changes in the absence of extracellular calcium but addition of Ca2+ to H2O2-treated cells suspended in a free Ca2+/EGTA buffer resulted in a great increase in [Ca2+]i reflecting influx of Ca2+ across the cell membrane. The increase of intracellular calcium was inhibited by Ni2+, La3+, and hyperosmotic solutions of mannitol and other osmolytes. This raises the possibility that the secretion of H2O2 by activated neutrophils could act as an autocrine regulator of neutrophil function through the activation of calcium entry.  相似文献   

5.
Competitive Calcium Binding: Implications for Dendritic Calcium Signaling   总被引:6,自引:0,他引:6  
Action potentials evoke calcium transients in dendrites of neocortical pyramidal neurons with time constants of <100 ms at physiological temperature. This time period may not be sufficient for inflowing calcium ions to equilibrate with all present Ca2+-binding molecules. We therefore explored nonequilibrium dynamics of Ca2+ binding to numerous Ca2+ reaction partners within a dendritelike compartment using numerical simulations. After a brief Ca2+ influx, the reaction partner with the fastest Ca2+ binding kinetics initially binds more Ca2+ than predicted from chemical equilibrium, while companion reaction partners bind less. This difference is consolidated and may result in bypassing of slow reaction partners if a Ca2+ clearance mechanism is active. On the other hand, slower reaction partners effectively bind Ca2+ during repetitive calcium current pulses or during slower Ca2+ influx. Nonequilibrium Ca2+ distribution can further be enhanced through strategic placement of the reaction partners within the compartment. Using the Ca2+ buffer EGTA as a competitor of fluo-3, we demonstrate competitive Ca2+ binding within dendrites experimentally. Nonequilibrium calcium dynamics is proposed as a potential mechanism for differential and conditional activation of intradendritic targets.  相似文献   

6.
Location-dependent photogeneration of calcium waves in HeLa cells   总被引:4,自引:0,他引:4  
The calcium ion (Ca2+) concentrations in a cell are responsible for the control of vital cellular functions and have been widely studied as a means to investigate and control cell activities. Here, we demonstrate Ca2+ wave generation in HeLa cells by femtosecond laser irradiation and show unexpected properties of the Ca2+ release and propagation. When the laser was focused in the cell cytoplasm, Ca2+ release was independent of both external Ca2+ influx and the phosphoinositide-phospholipase C (PLC) signaling pathway. The nucleus was not a susceptible target for laser-induced Ca2+ release, whereas irradiation of the plasma membrane produced evidence of transient poration, through which the extracellular solution could enter the cell. By chelating extracellular Ca2+, we found that laser-induced influx of ethylene glycol tetra-acetic acid (EGTA) can compete with calcium-induced calcium release and significantly delay or suppress the onset of the Ca2+ wave in the target cell. Intercellular Ca2+ propagation was adenosine triphosphate-dependent and could be observed even when the target cell cytosolic Ca2+ rise was suppressed by influx of EGTA. The irradiation effect on overall cell viability was also tested and found to be low (85% at 6h after irradiation by 60 mW average power). Laser-induced Ca2+ waves can be reliably generated by controlling the exposure and focal position and do not require the presence of caged Ca2+. The technique has the potential to replace other methods of Ca2+ stimulation, which either require additional caged molecules in the cell or do not have an interaction that is as well localized.  相似文献   

7.
Abstract

Capacitative calcium entry was studied in the A7r5 vascular smooth muscle cell line by measuring 45Ca2+ influx. Entry was induced by depletion of the Ca2+ pools by either the receptor agonist [Arg]8vasopressin (AVP) or the SR-Ca2+-ATPase inhibitor thapsigargin (TG). TG showed a higher efficacy for calcium influx than AVP. This is probably due to a larger Ca2+ release from the pools induced by TG compared to AVP and the irreversible inhibition of the SR-Ca2+-ATPase by TG causing influx to persist for a longer period of time. At maximally effective concentrations signals induced by AVP and TG were synergistic in the absence but not in the presence of the intracellular calcium chelator, 1,2-bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). Depolarisation with 55 mM KCl completely inhibited 45Ca2+ influx induced by TG but only slightly the one induced by AVP, both effects being less pronounced in the presence of BAPTA. [Ca2+]c signals induced by AVP and TG were both inhibited by depolarisation.

In conclusion, although our results show differences between AVP- and TG-induced Ca2+ influx, they can be explained by their different mechanism of action and are in accordance with an activation of the same capacitative entry pathway by both agents.  相似文献   

8.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

9.
Whole body calcium influx, branchial calcium efflux, and renal Ca2+ excretion were measured in rainbow trout (Oncorhynchus mykiss) exposed to hypercapnia. These experiments were performed to assess the potential impact on Ca2+ balance of the changes in gill morphology known to accompany respiratory acidosis in this species. After 48 h of hypercapnia, gill filamental chloride cell fractional area was significantly reduced. Despite this reduction and the presumed involvement of the chloride cell in calcium influx, whole body calcium influx was increased after 12 h of hypercapnia and remained elevated for 48 h. Branchial calcium efflux was unaltered during hypercapnia exposure, whereas renal Ca2+ excretion was elevated over preflux values only at 6 h of hypercapnia. Measurement of the kinetics of whole body calcium influx after 48 h of hypercapnia revealed a significant increase in the maximal uptake rate of Ca2+, yet the affinity constant of Ca2+ uptake was unaffected. Measurements of high-affinity Ca2+ -ATPase activities and ATP-dependent Ca2+ transport of gill basolateral membrane vesicles revealed that the ATP-dependent Ca2+ extrusion mechanism of the gills was not affected by hypercapnia. The results of the present study clearly show that the reduced chloride cell surface area that accompanies hypercapnia in trout does not impair calcium homeostasis. Although adjustments to the basolateral membrane high affinity Ca2+ transporter do not appear to play a role, the mechanism(s) underlying the maintenance of calcium homeostasis under hypercapnic conditions are unresolved. Accepted: 1 July 1996  相似文献   

10.
We recently showed that the C-terminal fragment PTH (52–84) effectively increases intracellular free calcium ([Ca2+]i in a subset of growth plate chondrocytes not activated by the N-terminal PTH fragment (1–34). Here we characterize the active site on C-terminal PTH (52–84) with respect to calcium (Ca2+)-signaling and the mechanism involved by using synthetic PTH-subfragments in digital CCD ratio-imaging experiments. Our results show amino acids 73–76 to be the core region for increasing [Ca2+]i. Ryanodine (1 μM), caffeine (10 mM), lithium (2 mM), or cyclopiazonic acid (2–5 μMI), agents that interfere with intracellular Ca2+ release, all failed to block PTH (52–84) induced [Ca2+]i increases. Depletion of extracellular calcium ([Ca2+]o) blocked PTH (52–84) induced [Ca2+]; increases, indicating a transmembrane Ca2+ influx. In contrast to voltage-gated and Ca2+ release activated Ca2+ influx, PTH (52–84) evoked Ca2+ influx was not blocked by nickel (1 mM). We conclude that PTH amino acids 73–76 are essential for activation of a nickel-insensitive Ca2+ influx pathway in growth plate chondrocytes that is likely to be of relevance for matrix calcification, a key step in endochondral bone formation.  相似文献   

11.
Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca2+ within internal calcium stores (Ca‐rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion‐selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca2+ transport was specific to midtubule segments, where 97% of the Ca2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage‐gated (L‐type) calcium channels decreased Ca2+ influx ≥fivefold in adenosine 3′,5′‐cyclic monophosphate (cAMP)‐stimulated tubules, suggesting basolateral Ca2+ influx is facilitated by voltage‐gated Ca2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ had opposite effects on tubule Ca2+ transport. The adenylyl cyclase‐cAMP‐PKA pathway promotes Ca2+ sequestration whereas both 5‐hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca2+ sequestration through stimulatory (cAMP) and inhibitory (Ca2+) regulatory pathways.  相似文献   

12.
Store-operated calcium channels are plasma membrane Ca2+ channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+ concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca2+ concentration serve as signals that activate a number of cellular processes, however, little is known about the regulation of these channels. We have characterized the immuno-suppressant compound BTP, which blocks store-operated channel mediated calcium influx into cells. Using an affinity purification scheme to identify potential targets of BTP, we identified the actin reorganizing protein, drebrin, and demonstrated that loss of drebrin protein expression prevents store-operated channel mediated Ca2+ entry, similar to BTP treatment. BTP also blocks actin rearrangements induced by drebrin. While actin cytoskeletal reorganization has been implicated in store-operated calcium channel regulation, little is known about actin-binding proteins that are involved in this process, or how actin regulates channel function. The identification of drebrin as a mediator of this process should provide new insight into the interaction between actin rearrangement and store-operated channel mediated calcium influx.  相似文献   

13.
Calcium influx via the NMDA receptor has been proposed as a mechanism of hypoxia-induced neuronal injury. The present study tests the hypothesis that the increase of [Ca2+]i observed under hypoxic conditions is the result of an NMDA-mediated Ca2+ influx. Changes of [Ca2+]i, measured fluorometrically with Fura-2, were followed after activation of the NMDA receptor with NMDA and glutamate, in the presence of glycine, in cortical synaptosomes prepared from six normoxic and six hypoxic guinea pig fetuses. [Ca2+]i was significantly higher in hypoxic vs normoxic synaptosomes, at baseline and in the presence of glycine as well as following activation of the NMDA receptor. Increase in [Ca2+]i was not observed in a Ca2+ free medium and was significantly decreased by MK-801 and thapsigargin. These results demonstrate that hypoxia-induced modifications of the NMDA receptor ion-channel results in increased [Ca2+]i in hypoxic vs normoxic synaptosomes. This increased accumulation may be due to an initial influx of Ca2+ via the altered NMDA receptor with subsequent release of Ca2+ from intracellular stores. Increase in intracellular calcium may initiate several pathways of free radical generation including cyclooxygenase, lipoxygenase, xanthine oxidase and nitric oxide synthase, and lead to membrane lipid peroxidation resulting in neuronal cell damage.  相似文献   

14.
Animal steroid hormones stimulate extracellular Ca2+ influx into cells; however, the mechanism remains unclear. In this study, we determined that the Ca2+ influx induced by steroid hormone 20-hydroxyecdysone (20E) is mediated by the calcium release-activated calcium channel modulator 1 (CRACM1/Orai1). The Orai1 mRNA is highly expressed during midgut programmed cell death in the lepidopteran insect Helicoverpa armigera. 20E upregulated the expression of Orai1 in H. armigera larvae and in an epidermal cell line (HaEpi). Knockdown of Orai1 in HaEpi cells blocked 20E-induced Ca2+ influx, and the inhibitor of inositol 1, 4, 5-trisphosphate receptor (IP3R) Xestospongin (XeC) blocked 20E-induced Ca2+ influx, suggesting that 20E, via Orai1, induces stored-operated Ca2+ influx. Orai1 interacts with stromal interaction molecule 1(Stim1) to exert its function in 20E-induced Ca2+ influx. 20E promotes Orai1 aggregation through G-protein-coupled receptors, phospholipase C gamma 1, and Stim1. Knockdown of Orai1 in the HaEpi cell line repressed apoptosis and maintained autophagy under 20E regulation. Knockdown of Orai1 in larvae delayed pupation, repressed midgut apoptosis, maintained the midgut in an autophagic state, and repressed 20E-pathway gene expression. These results revealed that steroid hormone 20E, via Orai1, induces Ca2+ influx to promote the transition of midgut from autophagy to apoptosis.  相似文献   

15.
Artificial pH gradients across tonoplast vesicles isolated from storage tissue of red beet (Beta vulgaris L.) were used to study the kinetics of a Ca2+/H+ antiport across this membrane. Ca2+-dependent H+ fluxes were measured by the pH-dependent fluorescence quenching of acridine orange. ΔpH-dependent Ca2+ influx was measured radiometrically. Both H+ efflux and Ca2+ influx displayed saturation kinetics and an identical dependence on external calcium with apparent Km values of 43.9 and 41.7 micromolar, respectively. Calcium influx was unaffected by an excess of Mg2+ but was inhibited by La3+ > Mn2+ > Cd2+. The apparent Km for external calcium was greatly affected (5-fold) by internal pH in the range of 6.0 to 6.5 and a transmembrane effect of internal proton binding on the affinity for external calcium is suggested.  相似文献   

16.
Modifications in Ca2+ influx may lead to profound changes in the cell activity associated with Ca2+-dependent processes, from muscle contraction and neurotransmitter release to calcium-mediated cell death. Therefore, calcium entry into the cell requires fine regulation. In this context, understanding of the modulation of voltage-dependent Ca2+ channels seems to be critical. The modulatory process results in the enhancement or decrement of calcium influx that may regulate the local and global cytosolic Ca2+ concentrations. Here, we summarize the well-established data on this matter described in isolated chromaffin cells by our laboratory and others, and the new results we have obtained in a more physiological preparation: freshly isolated slices of mouse adrenal medullae.  相似文献   

17.
An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca2+-ATPase, and the Ca2+ influx channel Orai1, has previously been shown to contribute to elevated Ca2+ influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we examined expression and localization of SPCA2 and Orai1 in mouse lactating mammary glands. We observed co-induction and co-immunoprecipitation of both proteins, and isoform-specific differences in the localization of SPCA1 and SPCA2. Three-dimensional cultures of normal mouse mammary epithelial cells were established using lactogenic hormones and basement membrane. The mammospheres displayed elevated Ca2+ influx by store independent mechanisms, consistent with upregulation of both SPCA2 and Orai1. Knockdown of either SPCA2 or Orai1 severely depleted Ca2+ influx and interfered with mammosphere differentiation. We show that SPCA2 is required for plasma membrane trafficking of Orai1 in mouse mammary epithelial cells and that this function can be replaced, at least in part, by a membrane-anchored C-terminal domain of SPCA2. These findings clearly show that SPCA2 and Orai1 function together to regulate Store-independent Ca2+ entry (SICE), which mediates the massive basolateral Ca2+ influx into mammary epithelia to support the large calcium transport requirements for milk secretion.  相似文献   

18.
A kinetic model for the membrane Ca2+-ATPase is considered. The catalytic cycle in the model is extended by enzyme auto-inhibition and by oscillatory calcium influx. It is shown that the conductive enzyme activity can be registered as damped or sustained Ca2+ pulses similar to observed experimentally. It is shown that frequency variations in Ca2+ oscillatory influx induce changes of pulsating enzyme activity. Encoding is observed for the signal frequency into a number of fixed levels of sustained pulses in the enzyme activity. At certain calcium signal frequencies, the calculated Ca2+-ATPase conductivity demonstrates chaotic multi-level pulses, similar to those observed experimentally.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 539–544.Original Russian Text Copyright © 2005 by Goldstein, Mayevsky, Zakrjevskaya.  相似文献   

19.
This study describes the mechanisms involved in the IGF-1 and IGF-2-induced increases in intracellular calcium concentration [Ca2+]i in cultured chondrocytes and the involvement of type 1 IGF receptors. It shows that IGF-1, IGF-2, and insulin increased the cytosolic free calcium concentration [Ca2+]i in a dose-dependent manner, with a plateau from 25 to 100 ng/ml for both IGF-1 and IGF-2 and from 1 to 2 μg/ml for insulin. The effect of IGF-1 was twice as great as the one of IGF-2, and the effect of insulin was 40% lower than IGF-1 effect. Two different mechanisms are involved in the intracellular [Ca2+]i increase. 1) IGF-1 and insulin but not IGF-2 involved a Ca2+ influx through voltage-gated calcium channels: pretreatment of the cells by EGTA and verapamil diminished the IGF-1 or insulin-induced[Ca2+]i but did not block the effect of IGF-2.2)IGF-1, IGF-2, and insulin also induced a Ca2+ mobilization from the endoplasmic reticulum: phospholipase C (PLC) inhihitors, neomycin, or U-73122 partially blocked the intracellular [Ca2+]i increase induced by IGF-1 and insulin and totally inhibited the effect of IGF-2. This Ca2+ mobilization was pertussis toxin (PTX) dependent, suggesting an activation of a PLC coupled to a PTX-sensitive G-protein. Lastly, preincubation of the cells with IGF1 receptor antibodies diminished the IGF-1-induced Ca2+ spike and totally abolished the Ca2+ influx, but did not modify the effect of IGF-2. These results suggest that IGF-1 action on Ca2+ influx involves the IGF1 receptor, while part of IGF-1 and all of IGF-2 Ca2+ mobilization do not implicate this receptor. J. Cell. Biochem. 64:414–422. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号