首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.  相似文献   

2.
3.
4.
AIMS: To determine the localization of MtuA, an LraI lipoprotein within Streptococcus uberis and assess whether the protein was able to induce an antibody response capable of growth inhibition. METHODS AND RESULTS: Immunoblots and ELISAs were performed on S. uberis cell fractions to localize the protein. The strongest reactivity was within the membrane-enriched fraction. Electron micrographs also showed labelling consistent with a location within the membrane. Specific antibodies from both rabbits and calves were unable to inhibit the growth of S. uberis in milk. In addition, MtuA was not detectable in a whole-cell ELISA and whole bacterial cells were unable to adsorb specific antibodies from antiserum raised against MtuA. CONCLUSIONS: The MtuA protein appears to be located within the cell membrane and is not on the bacterial surface and thus not available for interaction with potentially growth-inhibiting antibodies. SIGNIFICANCE AND IMPACT OF THE STUDY: Unlike PsaA of S. pneumoniae and MtsA of S. pyogenes, MtuA of S. uberis does not appear to be located at the cell surface. Therefore, in contrast to studies with other similar proteins, MtuA is unlikely to be a good vaccine candidate.  相似文献   

5.
Capsular hyaluronan of Streptococcus pyogenes is synthesized at the protoplast membrane. It is widely assumed that hyaluronan is exported by the synthase itself and that no additional protein is required for transfer through plasma membranes. However, we produced an insertional mutation that reduced the mucoid phenotype, hyaluronan production, and capsule formation. Nucleotide sequence analysis of the insertion site identified a gene coding for a protein with an ATP-binding cassette (ABC) that belonged to an ABC transporter system and was located next to the hyaluronan synthesis genes. The mucoid phenotype was reconstituted by complementation with DNA encoding the ABC transporter system. These results indicated that an ABC transporter was required for efficient capsule production.  相似文献   

6.
7.
8.
Sun X  Ge R  Chiu JF  Sun H  He QY 《FEBS letters》2008,582(9):1351-1354
Lipoprotein MtsA is a critical component of MtsABC responsible for iron binding and transport in the Gram-positive bacterium Streptococcus pyogenes. The present collective experimental data establish that Fe(2+) is the primary binding ion for MtsA under optimal physiologically relevant conditions. The binding affinities of MtsA to metal ions are Fe(2+)>Fe(3+)>Cu(2+)>Mn(2+)>Zn(2+). We report for the first time that bicarbonate is required as a synergistic anion for stable ferrous binding to MtsA, similar to the iron binding in human transferrin. This work provides valuable information, which helps to understand iron metabolism in bacteria, and creates a basis for developing strategies to suppress bacterial infection.  相似文献   

9.
In this work, we purified and characterized a newly identified lantibiotic (salivaricin D) from Streptococcus salivarius 5M6c. Salivaricin D is a 34-amino-acid-residue peptide (3,467.55 Da); the locus of the gene encoding this peptide is a 16.5-kb DNA segment which contains genes encoding the precursor of two lantibiotics, two modification enzymes (dehydratase and cyclase), an ABC transporter, a serine-like protease, immunity proteins (lipoprotein and ABC transporters), a response regulator, and a sensor histidine kinase. The immunity gene (salI) was heterologously expressed in a sensitive indicator and provided significant protection against salivaricin D, confirming its immunity function. Salivaricin D is a naturally trypsin-resistant lantibiotic that is similar to nisin-like lantibiotics. It is a relatively broad-spectrum bacteriocin that inhibits members of many genera of Gram-positive bacteria, including the important human pathogens Streptococcus pyogenes and Streptococcus pneumoniae. Thus, Streptococcus salivarius 5M6c may be a potential biological agent for the control of oronasopharynx-colonizing streptococcal pathogens or may be used as a probiotic bacterium.  相似文献   

10.
A new intragenic chromosomal integration site within the lacG gene of the lac operon has been identified in Streptococcus gordonii for use in the expression of foreign genes. Introduction of a portion of the Streptococcus pyogenes emm6 gene into the lacG locus resulted in the lactose-inducible surface expression of the S. pyogenes M6 protein. This result demonstrates the ability to modulate the in vitro or in vivo expression of a foreign gene in a S. gordonii recombinant using a biosynthetic metabolite.  相似文献   

11.
SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal binding capabilities, and previous work demonstrated that the protein can coordinate several types of first-row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To improve our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals [Mn(II), Fe(II), Co(II), Cu(I), and Zn(II)] were examined by using a combination of optical spectroscopy and mass spectrometry. Binding of SlyD to Mn(II) or Fe(II) ions was not detected, but the protein coordinates multiple ions of Co(II), Zn(II), and Cu(I) with appreciable affinity (K(D) values in or below the nanomolar range), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is as follows: Mn(II) and Fe(II) < Co(II) < Ni(II) ~ Zn(II) ? Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed.  相似文献   

12.
13.
McsA is a key modulator of stress response in Staphylococcus aureus that contains four CXXC potential metal-binding motifs at the N-terminal. Staphylococcus aureus ctsR operon encodes ctsR, clpC, and putative mcsA and mcsB genes. The expression of the ctsR operon in S. aureus was shown to be induced in response to various types of heavy metals such as copper and cadmium. McsA was cloned and overexpressed, and purified product was tested for metal-binding activity. The protein bound to Cu(II), Zn(II), Co(II), and Cd(II). No binding with any heavy metal except copper was found when we performed site-directed mutagenesis of Cys residues of three CXXC motifs of McsA. These data suggest that two conserved cysteine ligands provided by one CXXC motif are required to bind copper ions. In addition, using a bacterial two-hybrid system, McsA was found to be able to bind to McsB and CtsR of S. aureus and the CXXC motif was needed for the binding. This indicates that the Cys residues in the CXXC motif are involved in metal binding and protein interaction.  相似文献   

14.
Isonicotinoylhydrazide Schiff's bases formed by the reaction of substituted and unsubstituted furyl-2-carboxaldehyde and thiophene-2-carboxaldehyde with isoniazid and, their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal against one or more bacterial/fungal strains as compared to the uncomplexed compounds. The brine shrimp bioassay indicated Schiff's bases, L3 and L6 and, their Cu (II) and Ni (II) metal complexes to be cytotoxic against Artemia salina, while all other compounds were inactive (LD50 > 1000).  相似文献   

15.
Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.  相似文献   

16.
To investigate the flow of the metal nutrients iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) during rice seed germination, we performed microarray analysis to examine the expression of genes involved in metal transport. Many kinds of metal transporter genes were strongly expressed and their expression levels changed during rice seed germination. We found that metal transporter genes such as ZIP family has tendency to decrease in their expressions during seed germination. Furthermore, imaging of the distribution of elements (Fe, Mn, Zn, and Cu) was carried out using Synchrotron-based X-ray microfluorescence at the Super Photon ring-8 GeV (SPring-8) facility. The change in the distribution of each element in the seeds following germination was observed by in vivo monitoring. Iron, Mn, Zn, and Cu accumulated in the endosperm and embryos of rice seeds, and their distribution changed during rice seed germination. The change in the patterns of mineral localization during germination was different among the elements observed.  相似文献   

17.
Liu T  Golden JW  Giedroc DP 《Biochemistry》2005,44(24):8673-8683
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).  相似文献   

18.
Resistance to penicillin is widespread in the Gram-positive bacterium Streptococcus pneumoniae, and while several mutations are known to be implicated in resistance other mechanisms are likely to occur. We used a proteomic screen of two independent mutants in which resistance was selected in vitro. We found a number of differentially expressed proteins including PstS, a subunit of the phosphate ABC transporter of S. pneumoniae. This protein was increased in both mutants, a phenotype correlated to increased RNA expression of the entire phosphate ABC transporter operon. Inactivation of the pstS gene led to increased susceptibility to penicillin in the wild-type strain. To further link the expression of the ABC phosphate transporter with penicillin resistance, we looked at pstS mRNA levels in 12 independent clinical isolates sensitive and resistant to penicillin and found an excellent correlation between resistance and increased expression of pstS. Inactivation of pstS in one of the clinical isolates significantly reduced penicillin resistance. Global approaches are ideally suited for the discovery of novel factors in the biology of resistance.  相似文献   

19.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

20.
Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号