首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Genes of the B genome of Brassica conditioning Phoma resistance at the epicotyle were transferred into Brassica napus by interspecific hybridization. The recombinant lines expressed high resistance similar to that of the donor parents. Unlike the oligo- or poly-genically inherited resistance of B. napus known so far, the B-genome resistance genes of the recombinant lines behaved monogenically dominant. No significant differences in the level of resistance or in the phenotype of the resistance mechanisms were observed among homozygous resistant plants when the different B-genome origins investigated, i.e. B. nigra, B. juncea and B. carinata, were compared. Therefore it was assumed that the resistance genes of each B-genome species and the resistance mechanisms of the species are identical. Temperature increased the expression of internal lesions caused by Phoma lingam. High summer temperatures in the greenhouse led to faster development of tissue damage at the epicotyle of plants, resulting in significant deviations in segregation ratios, when fixed scores were used for disease classification. Independent of origin, the three B-genome resistance genes were introgressed at the same location of the rapeseed genome. The arrangement and distances of closely linked RFLP markers on linkage-groups were similar to those of the same markers on linkage group six of the rapeseed map. It is concluded that the B-genome resistance genes were introgressed by homoeologous recombination after allosyndetical pairing of B-genome chromosomes with the A- or C-genome chromosomes. Received: 3 April 1998/Accepted: 22 April 1998  相似文献   

2.
The three B genomes of Brassica contained in B. nigra, B. carinata and B. juncea were dissected by addition in B. napus. Using phenotypic, isozyme and molecular markers we characterized 8 alien B-genome chromosomes from B. nigra and B. carinata and 7 from B. juncea by constructing synteney groups. The alien chromosomes of the three different sources showed extensive intragenomic recombinations that were detected by the presence of the same loci in more than one synteny group but flanked by different markers. In addition, intergenomic recombinations were observed. These were evident in euploid AACC plants of the rapeseed phenotype derived from the addition lines carrying a few markers from the B genome due to translocations and recombinations between non-homoeologous chromosomes. The high plasticity of the Brassica genomes may have been an powerful factor in directing their evolution by hybridization and amphiploidy.  相似文献   

3.
No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain inBrassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs fromB. nigra (L.) Koch andB. napus L. inB. carinata, and to compare the results with those obtained in the amplification of the same markers in otherBrassica species of the U triangle. This set of SSRs fromB. nigra (B genome) andB. napus (AC genome) allows the identification of the 3 basic genomes of theBrassica species tested. 94.3% of the SSR markers fromB. nigra and 97.4% of those fromB. napus amplified SSR-specific products inB. carinata. Very high-quality amplification with a strong signal and easy scoring inB. carinata was recorded for 52.8% of the specific loci fromB. nigra SSRs and 59.3% of the specific loci fromB. napus SSRs, compared to 66.7% inB. nigra and 62.8% inB. napus. Genome specificity and amplification quality ofB. nigra andB. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research inB. carinata.  相似文献   

4.
Previous hybridisation studies showed that the repetitive DNA sequence pBNBH35 from Brassica nigra (genome BB, 2n=16) bound specifically to the B-genome and not to the A- or C-genomes of Brassica species. We amplified a sub-fragment of pBNBH35 from B. nigra by PCR, cloned and sequenced this sub-fragment, and confirmed that it was a 329-bp sub-fragment of pBNBH35. PCR and hybridisation techniques were used to confirm that the pBNBH35 sub-fragment was Brassica B-genome-specific. Fluorescence in situ hybridisation (FISH) in B. nigra, B. juncea (AABB, 2n=36) and B. napus (AACC, 2n=38) showed that the pBNBH35 sub-fragment was present on all eight Brassica B-genome chromosomes and absent from the A- and C-genome chromosomes. The pBNBH35 repeat was localised to the centromeric region of each B-genome chromosome. FISH clearly distinguished the B-genome chromosomes from the A-genome chromosomes in the amphidiploid species B. juncea. This is the first known report of a B-genome repetitive marker that is present on all B-genome chromosomes. It will be a useful tool for the detection of B chromosomes in interspecific hybrids and may prove useful for phylogenetic studies in Brassica species.  相似文献   

5.
Transgene flow from engineered Brassica napus to wild weed relatives could potentially have an environmental effect. To evaluate the introgression of transgenic B. napus into wild Brassica juncea, the hybrid F1 and backcross progenies derived from B. juncea (genome constitution AABB) and transgenic B. napus (AACC) crosses were investigated. C-genome-specific simple sequence repeat (SSR) markers corresponding to linkage groups N11–N19 in B. napus were screened and used to estimate the marker frequency in hybrid F1 and backcross progenies. C-genome-specific markers could be stably detected in hybrid F1 and backcross BC1 plants, but were only rarely found in the BC2–BC5 generations. For example, a specific SSR marker for linkage group N12 segregated in BC2 generation but were completely lost in BC3–BC5, while a specific SSR marker of linkage group N15 segregated in BC1, BC2 and BC3 generations and was absent in more advanced backcrossed generations (BC4 and BC5). The results indicate that a certain gene regions in Brassica napus plants are transmitted at a relatively lower frequency to wild relatives, and more rapidly disappeared in subsequent backcross generations. We propose that a foreign gene or transgene that is integrated in the C-chromosome of Brassica napus could reduce the risk of introgression in nature.  相似文献   

6.
We have examined the inheritance of 20 rapeseed (Brassica napus)-specific RAPD (randomly amplified polymorphic DNA) markers from transgenic, herbicide-tolerant rapeseed in 54 plants of the BC1 generation from the cross B. junceax(B. junceaxB. napus). Hybridization between B. juncea and B. napus, with B. juncea as the female parent, was successful both in controlled crosses and spontaneously in the field. The controlled backcrossing of selected hybrids to B. juncea, again with B. juncea as the female parent, also resulted in many seeds. The BC1 plants contained from 0 to 20 of the rapeseed RAPD markers, and the frequency of inheritance of individual RAPD markers ranged from 19% to 93%. The transgene was found in 52% of the plants analyzed. Five synteny groups of RAPD markers were identified. In the hybrids pollen fertility was 0–28%. The hybrids with the highest pollen fertility were selected as male parents for backcrossing, and pollen fertility in the BC1 plants was improved (24–90%) compared to that of the hybrids.  相似文献   

7.
The present study was carried out with the objective of evaluating genomic STMS markers developed earlier in Brassica napus, B. oleracea, B. rapa and B. nigra for their use in Brassica juncea and B. carinata. Ninety-six of the 100 STMS markers used under standardized annealing temperatures and gel concentrations produced clear reproducible amplification pattern. For majority of the markers 60 °C annealing temperature and 3.5% metaphor agarose gel were found suitable. High cross-transferability of STMS markers to related Brassica species including B. carinata (91.6%) and B. juncea (87.5%) suggested the possibility of utilizing these markers for genome analysis in the species where no such markers are available. The ‘B’ genome derived markers showed lower level of transferability to the ‘A’ and ‘C’ genome Brassica species. The potential of STMS markers to detect polymorphism among Brassica species and genera was 98.9%. The level of inter-specific polymorphism was much higher than the intea-specific polymorphism. The markers capable of revealing polymorphism among Brassica species and genera would be useful in Brassica introgression breeding programme. The polymorphic markers were found efficient in establishing the expected evolutionary relationships among the six different Brassica species and two related genera. Low level of intra-specific polymorphism revealed by these markers suggested use of a large set of such markers for various applications in Brassica genetics, genomics and breeding.  相似文献   

8.
Oilseed crop Brassica carinata BBCC is a natural allotetraploid of diploid species B. nigra BB and B. oleracea CC. To transfer the nuclear and organelle genes in a concerted manner from an alien species, B. tournefortii TT, to B. carinata, we produced somatic hybrids with genomic configuration TCBB using B. nigra and B. oleracea stocks that carried selectable marker genes. B. tournefortii TT was sexually crossed with hygromycin-resistant B. oleracea CC. Protoplasts isolated from shoot cultures of hygromycin-resistant F1 hybrids of B. tournefortiixB. oleracea TC were fused with protoplasts of kanamycin-resistant B. nigra BB. In two different fusion experiments 80 colonies were obtained through selection on media containing both hygromycin and kanamycin. Of these, 39 colonies regenerated into plants. Analysis of 15 regenerants by random amplified polymorphic DNA (RAPD) markers showed the presence of all three genomes, thereby confirming these to be true hybrids. Restriction fragment length polymorphism (RFLP) analysis of organelle genomes with heterologous chloroplast (cp)and mitochondrial (mt) DNA probes showed that the chloroplast genome was inherited from either of the two parents while mitochondrial genomes predominantly showed novel configurations due to either rearrangements or intergenomic recombinations. We anticipate that the TCBB genomic configuration will provide a more conducive situation for recombination between the T and C genomes during meiosis than the TTCCBB or TCCBB type configurations that are usually produced for alien gene transfer. The agronomic aim of producing TCBB hybrids is to transfer mitochondrial genes conferring cytoplasmic male sterility and nuclear genes for fertility restoration from B. tournefortii to B. carinata.  相似文献   

9.
 Chromosome counts and RFLP markers mapped to Arabidopsis thaliana were used to determine the proportion of eliminated chromosomes and retained A. thaliana DNA in the back-crossed (BC) progeny derived from symmetric and asymmetric somatic hybrids between Brassica napus and A. thaliana. All plants were analysed for the presence of two RFLP markers per chromosome, preferably with one located on each chromosome arm. A reduction in both A. thaliana RFLP markers and chromosome numbers was found in the BC1 and BC2 generations of the symmetric hybrids as well as in the BC1 generation of the asymmetric hybrids. In the symmetric hybrids, two back-crosses to B. napus were required to reduce the frequency of retained A. thaliana loci to 42.4% and mean chromosome number to 39.4. In comparison, the BC1 progeny of the asymmetric hybrids had 16% of the analysed A. thaliana loci present and an average of 38.4 chromosomes maintained. When the frequency of A. thaliana chromosomes with both analysed loci maintained was compared with the frequency of chromosomes with one locus lost and one kept, a reduction in the number of complete chromosomes between BC1 and BC2 derived from the symmetric hybrids was observed. Among the BC1 plants in the asymmetric group the situation was different, with higher amounts of incomplete donor chromosomes compared to whole chromosomes. The results indicate that A. thaliana chromosome fragments are more often found in the progeny of irradiated hybrids, while back-crossed symmetric hybrids have more complete chromosomes. Received: 2 April 1998 / Accepted: 14 July 1998  相似文献   

10.
The RFLP and AFLP techniques are laborious and expensive and therefore of limited use for marker-assisted selection, demanding a high throughput of samples in a short time. But marker-assisted selection is most useful for traits which are hard to score on single plants and influenced by environmental factors. Four RFLP and three AFLP markers have been found to be linked to genes of the B-genome of Brassica mediating resistance against Phoma lingam in oilseed rape. One RFLP and one AFLP marker were converted into three PCR-based STS markers: one of dominant, as well as one of codominant inheritance separated in a standard agarose gel and a third one of codominant inheritance to be separated in a polyacrylamide gel on an automated sequencer. As expected, the STS markers mapped at the same position as the original RFLP and AFLP markers. The STS markers are efficient in marker-assisted backcross programs of the resistant B-genome/Brassica napus recombinant lines with most of the tested oilseed rape varieties and breeding lines. More than 90% of the tested oilseed rape varieties and breeding lines exhibited no resistance marker alleles. The mapping results obtained with the markers, as well as comparative sequencing of the marker alleles, indicate synteny and homology between the B-genome resistance gene donors and B. napus in the region of the resistance genes. The location of the resistance genes in the B-genome/B. napus recombinant lines is most likely on the A genome. Thus the transfer of the B-genome resistance genes into Brassica campestris is also possible. Received: 9 December 1999 / Accepted: 21 June 2000  相似文献   

11.
Summary Synthetic alloploid Brassica oxyrrhina (2n = 18, OO) x B. campestris (2n = 20, AA) was repeatedly backcrossed with B. campestris to place B. campestris nucleus in the cytoplasm of B. oxyrrhina. Alloplasmic plants, obtained in BC5 generation, were stably male sterile but mildly chlorotic during initial development. Synthetic alloploid B. oxyrrhina-campestris was also hybridized with B. juncea to transfer B. oxyrrhina cytoplasm. Segregation for green and chlorotic plants was observed in BC1 and BC2 generations. By selection, however, normal green male sterile B. juncea was obtained in BC3. Pollen abortion in both B. campestris and B. juncea is post-meiotic.  相似文献   

12.
We constructed a genetic map on Brassica nigra based on a segregating population of 83 F2 individuals. Three different types of molecular markers were used to build the map including isozymes, restriction fragment length polymorphisms (RFLP), and random amplified polymorphic DNA (RAPD). The final map contained 124 markers distributed in 11 linkage groups. The map covered a total distance of 677 cM with the markers distributed within a mean distance of 5.5cM. Of the sequences found in the B. nigra map, 40% were duplicated and organized into three different types of arrangements. They were either scattered throughout the genome, organized in tandem, or organized in blocks of duplicated loci conserved in more than 1 linkage group.  相似文献   

13.
Wang GX  Tang Y  Yan H  Sheng XG  Hao WW  Zhang L  Lu K  Liu F 《Plant cell reports》2011,30(10):1811-1821
Somatic hybridization is a potential method for gene transfer from wild relatives to cultivated crops that can overcome sexual incompatibilities of two distantly related species. In this study, interspecific asymmetric somatic hybrids of Brassica oleracea var. botrytis (cauliflower) and Brassica nigra (black mustard) were obtained by protoplast fusion and their backcrossed (BC3) and selfed (S3) offspring were analyzed. Cytological analysis showed that the B. nigra chromosomes were successively eliminated in the backcrosses with cauliflower. The fertility of the hybrid progenies was quite different due to the asynchronous and abnormal chromosome behavior of pollen mother cells (PMC) during meiosis. Analysis of sequence-related amplified polymorphism (SRAP) showed that all of these hybrids mainly had the DNA banding pattern from the two parents with some alterations. Genetically, the selfed generations were closer to B. nigra, while the backcrossed generations were closer to the cauliflower parent. Analysis of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) showed that all somatic hybrids in this study contained chloroplast (cp) DNA of the donor parent black mustard, while mitochondrial (mt) DNA showed evidence of recombination and variations in the regions analyzed. Furthermore, three BC3 plants (originated from somatic hybrids 3, 4, 10) with 2–8 B. nigra-derived chromosomes shown by genomic in situ hybridization (GISH) displayed a more cauliflower-like morphology and high resistance to black-rot. These plants were obtained as bridge materials for further analysis and breeding.  相似文献   

14.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

15.
Summary Six Brassica napus — B. nigra disomic addition lines were characterized by isozyme, fatty acid, and RFLP markers. The markers were arranged in six synteny groups, representing six of the eight chromosomes present in the B. nigra genome. Synteny group 1 displayed high levels of linoleic and linolenic acids in the seeds of the B. nigra parent. Synteny group 3 accumulated higher levels of eicosenoic and erucic acid than B. nigra. Three of the lines transmitted the alien chromosome to 100% of the progeny. The rest had variable transmission rates but all were above 50%. Most of the lines produced disomic addition plants in their progeny, suggesting pollen transmission of the alien chromosome. In addition to the marked lines, six others remained unmarked. These could be grouped into two classes according to their alien chromosome transmission. It is likely that they represent the two other B. nigra chromosomes that remained uncharacterized by the markers. No diploid individuals carrying B. nigra genome-specific markers were detected in the progenies studied.  相似文献   

16.
Shyam Prakash 《Genetica》1973,44(2):249-263
Commonly cultivated mustard, Brassica juncea Coss, is an amphidiploid having in its genetic system the full 20-chromosome A genome (Brassica campestris) and the 16-chromosome B genome (Brassica nigra). Considerable natural variability exists under the A genome. These variations have been exploited for the artificial synthesis of B. juncea in order to breed improved mustard. The different combinations were studied both in their F1's and advanced amphidiploid generations in respect of their morphology, meiotic behaviour and fertility. Amphidiploids from leafy and rapiferous groups were generally bushy having arboreal habit. Some combinations from the leafy group result in types with luxuriant vegetative growth and can be used for fodder purposes. The amphiploids of ssp. rapifera did not give a swollen and enlarged root like the mother parent. None of the combinations from these two groups was promising in respect of oil and seed yield. Amphidiploids from the oleiferous group were both high seed and oil yielders and thus provide evidence that it formed one of the constituent parental species in the formation of oil yielding B. juncea.  相似文献   

17.
Understanding how host‐plant characteristics affect behavioral and physiological responses of insect herbivores is of considerable importance in the development of resistant crop germplasm. Feeding, oviposition preference, larval development, and oviposition behavior of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (= Ceutorhynchus assimilis Payk.) (Coleoptera: Curculionidae), were investigated on eight Brassicaceae species that differed in their glucosinolate profiles. The least preferred host plants for feeding and oviposition were the Sinapis alba L. lines while the Brassica carinata L. line was most preferred. Larval development occurred most rapidly on Brassica rapa L. and slowest on S. alba. Larval weight was highest on B. napus L. and lowest on S. alba. Total glucosinolate levels did not influence C. obstrictus larval growth or development; however high levels of specific glucosinolates such as p‐hydroxybenzyl and 3‐butenyl glucosinolate were associated with increased developmental time or reduced weight. The time required for oviposition behavioral events was measured on different host‐plant species: B. rapa, B. napus, B. napus×S. alba, B. tournefortii Gouan., B. juncea (L.) Czern, B. carinata, B. nigra (L.) Koch., and S. alba. The early steps in the sequence were completed faster on more susceptible host plants (B. carinata, B. napus, and B. rapa) than on relatively resistant ones (B. tournefortii and B. juncea). Females explored pods of B. nigra and S. alba, but oviposition occurred only rarely on these species. There was no significant difference in the location on the pod on which oviposition occurred among the different plant species. Mean eggs laid per female weevil were highest on the B. napus×S. alba hybrid and lowest on B. nigra and S. alba.  相似文献   

18.
Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.  相似文献   

19.
Quantitative trait loci (QTL) analysis of yield influencing traits was carried out in Brassica juncea (AABB) using a doubled haploid (DH) mapping population of 123 lines derived from a cross between Varuna (a line representing the Indian gene pool) and Heera (representing the east European gene pool) to identify potentially useful alleles from both the parents. The existing AFLP based map of B. juncea was further saturated with RFLP and SSR markers which led to the identification of the linkage groups belonging to the A (B. rapa) and B (B. nigra) genome components of B. juncea. For QTL dissection, the DH lines were evaluated at three different environments and phenotyped for 12 quantitative traits. A total of 65 QTL spread over 13 linkage groups (LG) were identified from the three environments. QTL analysis showed that the A genome has contributed more than the B genome to productivity (68% of the total QTL detected) suggesting a more prominent role of the A genome towards domestication of this crop. The east European line, Heera, carried favorable alleles for 42% of the detected QTL and the remaining 58% were in the Indian gene pool line, Varuna. We observed clustering of major QTL in a few linkage groups, particularly in J7 and J10 of the A genome, with QTL of different traits having agronomically antagonistic allelic effects co-mapping to the same genetic interval. QTL analysis also identified some well-separated QTL which could be readily transferred between the two pools. Based on the QTL analysis, we propose that improvement in yield could be achieved more readily by heterosis breeding rather than by pure line breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
We investigated the influence of genotype on homoeologous and homologous recombination frequency in eight different Brassica napus (AACnCn) × B. carinata (BBCcCc) interspecific hybrids (genome composition CnCcAB). Meiotic recombination events were assessed through microsatellite marker analysis of 67 unreduced microspore-derived progeny. Thirty-four microsatellite markers amplified 83 A-, B-, Cn- and Cc-genome alleles at 64 loci, of which a subset of seven markers amplifying 26 alleles could be used to determine allele copy number. Hybrid genotypes varied significantly in loss of A- and B-genome alleles (P < 0.0001), which ranged from 6 to 22% between hybrid progeny sets. Allele copy number analysis revealed 19 A–C, 3 A–B and 10 B–C duplication/deletion events attributed to homoeologous recombination. Additionally, 55 deletions and 19 duplications without an accompanying dosage change in homoeologous alleles were detected. Hybrid progeny sets varied in observed frequencies of loss, gain and exchange of alleles across the A and B genomes as well as in the diploid C genome. Self-fertility in hybrid progeny decreased as the loss of B-genome loci (but not A-genome loci) increased. Hybrid genotypes with high levels of homologous and homoeologous exchange may be exploited for genetic introgressions between B. carinata and B. napus (canola), and those with low levels may be used to develop stable synthetic Brassica allopolyploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号