首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Visual event-related potentials and reaction times in physical and semantic discrimination tasks were studied in 29 normal subjects between the ages of 21 and 74 years. The NA, N2 and P3 components of the evoked potential, and simple and GO/NOGO reaction times were observed in both kinds of discrimination. Significant age-related slowing of the GO/NOGO reaction time was observed only in the semantic discrimination task. The N2 and P3 latencies elicited by both the physical and semantic stimuli were significantly and positively correlated with age, although there was no significant correlation between the NA latency and age. The interpeak latency between N2 and P3 showed no age-related changes. The decline of cognitive information processing with advancing age was evident from the classification of a perceived event as reflected by the N2 component.  相似文献   

2.
The purpose of this investigation was to document and quantify age-related differences in the coordination of fingers during a task that required production of an accurate time profile of the total moment of force by the four fingers of a hand. We hypothesized that elderly subjects would show a decreased ability to stabilize a time profile of the total moment of force, leading to larger indexes of moment variability compared with young subjects. The subjects followed a trapezoidal template on a computer screen by producing a time profile of the total moment of force while pressing down on force sensors with the four fingers of the right (dominant) hand. To quantify synergies, we used the framework of the uncontrolled manifold hypothesis. The elderly subjects produced larger total force, larger variance of both total force and total moment of force, and larger involvement of fingers that produced moment of force against the required moment direction (antagonist moment). This was particularly prominent during supination efforts. Young subjects showed covariation of commands to fingers across trials that stabilized the moment of total force (moment-stabilizing synergy), while elderly subjects failed to do so. Both subject groups showed similar indexes of covariation of commands to the fingers that stabilized the time profile of the total force. The lack of moment-stabilizing synergies may be causally related to the documented impairment of hand function with age.  相似文献   

3.
The objective of the study is to examine the effects of age and gender on finger coordination. Twelve young (24 +/- 8 yr; 6 men and 6 women) and 12 elderly (75 +/- 5 yr; 6 men and 6 women) subjects performed single-finger maximal contraction [maximal voluntary contraction (MVC)], four-finger MVC, and four-finger ramp force production tasks by pressing on individual force transducers. A drop in the force of individual fingers during four-finger MVC tasks compared with single-finger MVC tasks (force deficit) was larger, whereas unintended force production by other fingers during single-finger MVC tasks (enslaving) was smaller, in elderly than in young subjects and in women than in men. Force deficit was smaller and enslaving was larger in subjects with higher peak force. During the ramp task, the difference between the variance of total force and the sum of variances of individual forces showed a logarithmic relation to the level of total force, across all subject groups. These findings suggest that indexes of finger coordination scale with force-generating capabilities across gender and age groups.  相似文献   

4.
Hand-eye coordination during sequential tasks.   总被引:4,自引:0,他引:4  
The small angle subtended by the human fovea places a premium on the ability to quickly and accurately direct the gaze to targets of interest. Thus the resultant saccadic eye fixations are a very instructive behaviour, revealing much about the underlying cognitive mechanisms that guide them. Of particular interest are the eye fixations used in hand-eye coordination. Such coordination has been extensively studied for single movements from a source location to a target location. In contrast, we have studied multiple fixations where the sources and targets are a function of a task and chosen dynamically by the subject according to task requirements. The task chosen is a copying task: subjects must copy a figure made up of contiguous coloured blocks as fast as possible. The main observation is that although eye fixations are used for the terminal phase of hand movements, they are used for other tasks before and after that phase. The analysis of the spatial and temporal details of these fixations suggests that the underlying decision process that moves the eyes leaves key decisions until just before they are required.  相似文献   

5.
This study investigated the effects of modifying contact finger forces in one direction-normal or tangential-on the entire set of the contact forces, while statically holding an object. Subjects grasped a handle instrumented with finger force-moment sensors, maintained it at rest in the air, and then slowly: (1) increased the grasping force, (2) tried to spread fingers apart, and (3) tried to squeeze fingers together. Analysis was mostly performed at the virtual finger (VF) level (the VF is an imaginable finger that generates the same force and moment as the four fingers combined). For all three tasks there were statistically significant changes in the VF normal and tangential forces. For finger spreading/squeezing the tangential force neutral point was located between the index and middle fingers. We conclude that the internal forces are regulated as a whole, including adjustments in both normal and tangential force, instead of only a subset of forces (normal or tangential). The effects of such factors as EFFORT and TORQUE were additive; their interaction was not statistically significant, thus supporting the principle of superposition in human prehension.  相似文献   

6.
 The coordination of digits during combined force/torque production tasks was further studied using the data presented in the companion paper [Zatsiorsky et al. Biol Cybern this issue, Part I]. Optimization was performed using as criteria the cubic norms of (a) finger forces, (b) finger forces normalized with respect to the maximal forces measured in single-finger tasks, (c) finger forces normalized with respect to the maximal forces measured in a four-finger task, and (d) finger forces normalized with respect to the maximal moments that can be generated by the fingers. All four criteria failed to predict antagonist finger moments when these moments were not imposed by the task mechanics. Reconstruction of neural commands: The vector of neural commands c was reconstructed from the equation c=W −1 F, where W is the finger interconnection weight matrix and F is the vector of finger forces. The neural commands ranged from zero (no voluntary force production) to one (maximal voluntary contraction). For fingers producing moments counteracting the external torque (`agonist' fingers), the intensity of the neural commands was well correlated with the relative finger forces normalized to the maximal forces in a four-finger task. When fingers produced moments in the direction of the external torque (`antagonist' fingers), the relative finger forces were always larger than those expected from the intensity of the corresponding neural commands. The individual finger forces were decomposed into forces due to `direct' commands and forces induced by enslaving effects. Optimization of the neural commands resulted in the best correspondence between actual and predicted finger forces. The antagonist moments are, at least in part, due to enslaving effects: strong commands to agonist fingers also activated antagonist fingers. Received: 8 August 2001 / Accepted in revised form: 7 February 2002  相似文献   

7.
 We studied the coordinated action of fingers during static tasks involving exertion of force and torque on a handheld object. Subjects were asked to keep a handle with an attachment that allowed for independent change of the suspended load (0.5–2.0 kg) and external torque (0.375–1.5 N m) in a vertical position while applying minimal effort. Normal and shear forces were measured from the thumb; normal forces only were measured from the four fingers. Experimental results: (1) the thumb shear force increased during supination efforts and decreased during pronation efforts; (2) the total moment of the normal finger forces only counterbalanced approximately 50% of the external torque, hence shear forces accounted for approximately one-half of the total torque exerted on the object; (3) the total normal force increased with external torque, and the total force magnitude did not depend on the torque direction; (4) the forces of the `peripheral' (index and little) fingers depended mainly on the torque while the forces exerted by the `central' (middle and ring) fingers depended both on the load and torque; (5) there was a monotonic relationship between the mechanical advantage of a finger (i.e., its moment arm during torque production) and the force produced by that finger; and (6) antagonist finger moments acting opposite to the intended direction of the total moment were always observed – at low torques the antagonist moments were as high as 40–60% of the agonist moments. Modeling: A three-zone model of coordinated finger action is suggested. In the first zone of load/torque combinations, activation of antagonist fingers (i.e., fingers that generate antagonist moments) is necessary to prevent slipping. In the second zone, the activity of agonist fingers is sufficient for preventing slips. In the third zone, the performer has freedom to choose between either activating the antagonist fingers or redistributing activities amongst the agonist fingers. The findings of this study provide the foundation for neural network and optimization modeling described in the companion paper [Zatsiorsky et al. (2002) Biol Cybern DOI 10.1007/s00422-002-0320-7]. Received: 8 August 2001 / Accepted in revised form: 7 February 2002  相似文献   

8.
Age-related changes in T cell function.   总被引:4,自引:0,他引:4  
A comparison was made of the abilities of carrier (BGG)-primed T cell populations from young (4-month old), middle-aged (14- and 19-month old) and old (31- and 34-month old) mice to collaborate with hapten (DNP)-primed B cells from young mice in a cell-transfer system. The plaque-forming cell responses to 2,4-dinitrophenol (DNP) were measured by a modification of the Jerne plaque assay. The DNP-specific antibody-forming cell responses of old T cell/young B cell combinations were significantly lower than those of young T cell/young B cell combinations, both in the number of T cells needed for peak response and in the size of that response. These data indicate that the primed T cell populations of old mice are deficient by a factor of 6 in their ability to initiate B cell proliferation and differentiation into antibody-forming cells.  相似文献   

9.
Age-related changes in hepatic triglyceride formation have been described in developing rats. Triglyceride formation was measured in vitro in the presence of [14C]glycerol-3-phosphate, palmitate, ATP, CoA, and Mg2+ by using liver homogenates and microsomal fractions derived from various age groups of animals. Triglyceride formation was most active in one-day-old rats and then decrease with age. The increase in triglyceride formation following birth was prevented by the administration of puromycin or by denying suckling. In addition, changes in plasma and hepatic triglyceride concentrations, were also determined as functions of age. These studies suggest that the age of the animal significantly influences triglyceride metabolism.  相似文献   

10.
11.
Age-related changes in oxidized proteins   总被引:39,自引:0,他引:39  
We have previously described the oxidative inactivation of several key metabolic enzymes by a variety of mixed function oxidation systems. Because many of the enzymes which are inactivated have been shown by others to accumulate as inactive or less active forms during cellular aging, we have examined the levels of oxidatively modified proteins in two model systems used for studies on aging. The results show that levels of oxidatively modified proteins increase with age in circulating erythrocytes, and this change is correlated with the loss of marker enzyme activity. Our studies also show that in cultured fibroblasts from normal donors the levels of oxidatively modified proteins increase only after the age of 60. However, the levels of oxidatively modified proteins in fibroblasts from individuals with progeria or Werner's syndrome are significantly higher than age-matched controls. Moreover, treatment of glucose-6-phosphate dehydrogenase with a mixed function oxidation system leads to oxidative modification and increased heat lability of the enzyme. Taken together these results suggest that loss of functional enzyme activity and increased heat lability of enzymes during aging may be due in part to oxidative modification by mixed function oxidation systems.  相似文献   

12.
Motor unit (MU) activity pattern was examined in the right-hand extensor digitorum communis muscle (EDC) during standardised finger movements simulating actual computer mouse tasks. Intramuscular recordings were performed with a quadripolar needle electrode. Nine women performed four lifts of their right-hand index finger, middle finger or both as well as a number of double clicks. Additionally, the subjects performed contra lateral activity with their left-hand fingers and for three subjects recordings were also obtained during an interview with no physical activity. Besides the expected close coupling of MU activity with finger movement, activity was observed in three different situations with no physical requirements. Attention related activity was found before or after performance of the finger movement task, contra lateral activity in right EDC during left-hand finger tasks, and activity during mental activity without any finger movements involved. A relatively large number of doublet occurrences suggest they are a natural part of the activation pattern during performance of the rapid finger movement required to perform an efficient double click on the computer mouse.  相似文献   

13.
Eye lenses from young rats or mice synthesize GSH from methionine or N-acetylcysteine. However, lenses from old animals do not synthesize GSH from methionine. This is due to the absence of cystathionase activity in old lenses. GSH monoethyl ester, but not free GSH, increases GSH content and protects the lens against experimental oxidative stress. The importance of these results in the prevention of cataractogenesis is discussed.  相似文献   

14.
15.
We hypothesized that movement fluctuations in the index finger reflect the integrated result of the coordination of multiple muscles because index finger movements are determined by the cooperation of multiple muscles spanning the metacarpophalangeal (MCP) joint. To evaluate this hypothesis, the aim of the present study was to examine the fluctuations of the index finger in abduction-adduction and extension-flexion directions during a position-holding task using two laser displacement sensors. Eleven healthy men maintained their index finger position while supporting a load at 5% of the maximal voluntary contraction force. To maintain the position of the index finger, displacement of the index finger in the abduction-adduction and extension-flexion directions was measured from a distance with two laser displacement sensors that were positioned to the lateral side of and above the index finger. The index finger movements fluctuated around the target position in not only the abduction-adduction direction but also the extension-flexion direction. The path length of finger displacement and the standard deviation of finger acceleration were significantly greater in the extension-flexion direction than in the abduction-adduction direction. These results suggest that the index finger movements quantified by two laser displacement sensors reflect the coordination of multiple muscles spanning the MCP joint.  相似文献   

16.
A dynamic model for finger interphalangeal coordination   总被引:2,自引:1,他引:2  
In this paper a dynamic model to investigate interphalangeal coordination in the human finger is proposed. Suitable models which describe the relationship between the tendon displacement and the joint angles have been chosen and incorporated into the skeletal dynamic model. A kinematic and kinetic model for interphalangeal coordination is suggested. Digital computer simulations are carried out to study interphalangeal (IP) flexion. Moreover, the effect of two different optimization methods is contrasted. The two optimization algorithms are employed to obtain a set of feasible values for the forces in the tendons or muscles of the finger.  相似文献   

17.
Monoclonal antibodies were prepared that recognize different age-related epitopes on proteoglycan subunits of high buoyant density isolated from human epiphysial and articular cartilages. Antibody EFG-4 (IgG1) recognizes a proteinase-sensitive segment associated with the core protein. Antibody BCD-4 (IgG1) reacts with keratan sulphate bound to core protein. Both epitopes are minimally expressed in foetal cartilage and increase with age after birth to become maximally expressed in adult cartilage by about 30 years of age. In contrast, monoclonal antibody alpha HFPG-846 (IgM) recognizes a core-protein-related epitope that is maximally expressed in young foetal cartilage, declines up to birth and thereafter and is almost absent after about 30 years of age. Antibody alpha HFPG-846 was used to isolate by immuno-affinity chromatography two subpopulations of proteoglycan subunits from a 16-year-old-human cartilage proteoglycan subunit preparation. Only the antibody-unbound population showed a significant reaction with antibodies EGF-4 and BCD-4. The amino acid and carbohydrate compositions of these proteoglycan fractions were different, and one (antibody-bound) resembled those of foetal and the other (antibody-unbound) resembled those of adult proteoglycans isolated from 24-27-week-old-foetal and 52-56-year-old-adult cartilage respectively. These observations demonstrate that human cartilages contain at least two chemically and immunochemically distinct populations of proteoglycans, the proportions and content of which are age-dependent. It is likely that these populations represent the products of different genes, though their heterogeneity may be compounded by the result of different post-translation modifications.  相似文献   

18.
19.
20.
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号