首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li WW  Cai DF  Ren HM 《生理科学进展》2006,37(2):97-102
构象病的概念被广泛用于命名与蛋白质的构象异常相关的疾病。随着生命科学的进步,人们对神经变性疾病发病的分子机制有了较好的认识,发现几乎所有的此类疾病,诸如阿尔采末病(AD)、帕金森病(PD)、亨廷顿病(HD)以及朊蛋白病(PrD)等都具有一个共同的特征,即病变细胞中蓄积有大量错误折叠并易于聚合的蛋白质,这符合构象病的特点,所以又派生了神经变性构象病的新概念。近年来,人们在神经变性构象病的蛋白质错误折叠和聚合以及其细胞毒性方面的认识越来越走向深入,这将对寻找有效的治疗方法起到极大的推动作用。  相似文献   

2.
Various human neurodegenerative disorders are associated with processes that involve misfolding of polypeptide chains. These so-called protein misfolding disorders include Alzheimer's and Parkinson's diseases and an increasing number of inherited syndromes that affect neurons involved in motor control circuits throughout the central nervous system. The reasons behind the particular susceptibility of neurons to misfolded proteins are currently not known. The main function of a class of proteins known as molecular chaperones is to prevent protein misfolding and aggregation. Although neuronal cells contain the major known classes of molecular chaperones, central-nervous-system-specific chaperones that maintain the neuronal proteome free from misfolded proteins are not well defined. In this study, we assign a novel molecular chaperone activity to the protein sacsin responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay, a degenerative disorder of the cerebellum and spinal cord. Using purified components, we demonstrate that a region of sacsin that contains a segment with homology to the molecular chaperone Hsp90 is able to enhance the refolding efficiency of the model client protein firefly luciferase. We show that this region of sacsin is highly capable of maintaining client polypeptides in soluble folding-competent states. Furthermore, we demonstrate that sacsin can efficiently cooperate with members of the Hsp70 chaperone family to increase the yields of correctly folded client proteins. Thus, we have identified a novel chaperone directly involved in a human neurodegenerative disorder.  相似文献   

3.
Modulation of neurodegeneration by molecular chaperones   总被引:18,自引:0,他引:18  
Many neurodegenerative disorders are characterized by conformational changes in proteins that result in misfolding, aggregation and intra- or extra-neuronal accumulation of amyloid fibrils. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration known for animal models of human disease. Recent studies have investigated the role of molecular chaperones in amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and polyglutamine diseases. We propose that molecular chaperones are neuroprotective because of their ability to modulate the earliest aberrant protein interactions that trigger pathogenic cascades. A detailed understanding of the molecular basis of chaperone-mediated protection against neurodegeneration might lead to the development of therapies for neurodegenerative disorders that are associated with protein misfolding and aggregation.  相似文献   

4.
Protein misfolding and aggregation are the very first and critical steps in development of various neurodegenerative disorders, including Parkinson’s disease, induced by misfolding of α-synuclein. Thus, elucidating properties of proteins in misfolded states and understanding the mechanisms of their assembly into the disease prone aggregates are critical for the development of rational approaches to prevent protein misfolding-mediated pathologies. To accomplish this goal and as a first step to elucidate the mechanism of α-synuclein misfolding, we applied single-molecule force spectroscopy capable of detecting protein misfolding. We immobilized α-synuclein molecules at their C-termini at the atomic force microscope tips and substrate surfaces, and measured the interaction between the proteins by probing the microscope tip at various locations on the surface. Using this approach, we detected α-synuclein misfolded states by enhanced interprotein interaction. We used a dynamics force spectroscopy approach to measure such an important characteristic of dimers of misfolded α-synuclein as their lifetimes. We found that the dimer lifetimes are in the range of seconds and these values are much higher than the characteristics for the dynamics of the protein in monomeric state. These data show that compared to highly dynamic monomeric forms, α-synuclein dimers are much more stable and thus can serve as stable nuclei for the formation of multimeric and aggregated forms of α-synuclein. Importantly, two different lifetimes were observed for the dimers, suggesting that aggregation can follow different pathways that may lead to different aggregated morphologies of α-synuclein.  相似文献   

5.
Nakamura T  Gu Z  Lipton SA 《Aging cell》2007,6(3):351-359
Glutamatergic hyperactivity, associated with Ca2+ influx and consequent production of nitric oxide (NO), is potentially involved in both normal brain aging and age-related neurodegenerative disorders. Many neurodegenerative diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Normal protein degradation by the ubiquitin-proteasome system can prevent accumulation of aberrantly folded proteins. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. In particular, molecular chaperones - such as protein disulfide isomerase, glucose regulated protein 78, and heat shock proteins - can provide neuroprotection from misfolded proteins by facilitating proper folding and thus preventing aggregation. Here, we present evidence for the hypothesis that NO contributes to normal brain aging and degenerative conditions by S-nitrosylating specific chaperones that would otherwise prevent accumulation of misfolded proteins.  相似文献   

6.
淀粉样沉积症是致命性的疾病,可以是神经退行性的,也可以是系统性的.该疾病以错误折叠蛋白质的堆积、缠绕成纤维为特征,最终导致受累组织、器官的渐进性坏死.目前,没有有效的治疗手段可以阻止该类疾病的进程.错误折叠蛋白质的累积诱导内质网应激,被认为是退行性疾病的标志.血管生成素不仅可以调节细胞生长和增殖,也在应激条件下细胞存活中发挥作用.最近,发现血管生成素介导的应激反应可以减轻蛋白聚积造成的损伤,提示该蛋白可能在退行性疾病中具有新功能.本综述概述了血管生成素在淀粉样沉积症中的研究进展,特别是描述了血管生成素失调与该类疾病的起始和进展间的关系.我们认为,深入了解血管生成素失调的分子基础有助于发展与蛋白质错误折叠和聚积相关的退行性疾病的治疗方法.  相似文献   

7.
8.
Most proteins in the cell adopt a compact, globular fold that determines their stability and function. Partial protein unfolding under conditions of cellular stress results in the exposure of hydrophobic regions normally buried in the interior of the native structure. Interactions involving the exposed hydrophobic surfaces of misfolded protein conformers lead to the formation of toxic aggregates, including oligomers, protofibrils and amyloid fibrils. A significant number of human disorders (e.g. Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis and type II diabetes) are characterised by protein misfolding and aggregation. Over the past five years, outstanding progress has been made in the development of therapeutic strategies targeting these diseases. Three promising approaches include: (1) inhibiting protein aggregation with peptides or small molecules identified via structure-based drug design or high-throughput screening; (2) interfering with post-translational modifications that stimulate protein misfolding and aggregation; and (3) upregulating molecular chaperones or aggregate-clearance mechanisms. Ultimately, drug combinations that capitalise on more than one therapeutic strategy will constitute the most effective treatment for patients with these devastating illnesses.  相似文献   

9.
Many degenerative diseases are fundamentally associated with aging and the accumulation of misfolded proteins as amyloid fibrils. Although such diseases are associated with different proteins, they share several pathological features. These similarities might be due to underlying commonalities in the pathway of aggregation and the structures of the various aggregation products. Because protein misfolding is thought to be central to the pathological state, it is essential to be able to distinguish such pathological states from native and non-pathological states, especially in vivo or in complex mixtures. Conformation-dependent antibodies that specifically recognize misfolded proteins are proving to be useful tools for examining the mechanisms of amyloid formation and for clarifying the roles of various misfolded states in pathogenesis. The common structures and mechanisms hold promise for the development of broad-spectrum drugs and vaccines that will be effective for the treatment of many of these diseases.  相似文献   

10.
新生肽链折叠过程中容易出现错误折叠与聚沉,从而导致折叠病等病理现象. 分子伴侣具有辅助其他蛋白质正确折叠,保护蛋白质分子结构的功能.本文选用人肌肌酸激酶为靶蛋白,研究了肽基脯氨酰顺反异构酶人亲环素18(human cyclophilin 18,hCyp18)对人肌肌酸激酶去折叠的作用,发现hCyp18能够抑制人肌肌酸激酶在热变性与化学变性过程中的失活与构象变化,并抑制人肌肌酸激酶在化学变性过程中的聚沉,因此推断hCyp18具有针对人肌肌酸激酶的分子伴侣功能.本文同时研究了hCyp18与人肌肌酸激酶的结合作用,对hCyp18的作用机制进行了初步探讨.  相似文献   

11.
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process.  相似文献   

12.
Conformational or misfolding diseases are a large class of devastating human disorders associated with protein misfolding and aggregation. Most conformational diseases are caused by a combination of genetic and environmental factors, suggesting that spontaneous events can destabilize the protein involved in the pathology or impair the clearance mechanisms of misfolded aggregates. Aging is one of the risk factors associa-ted to these events, and the clinical relevance of conformational disorders is growing dramatically, as they begin to reach epidemic proportions due to increases in mean lifespan. Currently, there are no effective strategies to slow or prevent these diseases. Intrabodies are promising therapeutic agents for the treatment of misfolding diseases, because of their virtually infinite ability to specifically recognize the different conformations of a protein, including pathological isoforms, and because they can be targeted to the potential sites of aggregation (both intra- and extracellular sites). These molecules can work as neutralizing agents against amylo-idogenic proteins by preventing their aggregation, and/or as molecular shunters of intracellular traffic by re-routing the protein from its potential aggregation site. The fast-developing field of recombinant antibody technology provides intrabodies with enhanced binding specificity and stability, together with lower immunogenicity, for use in a clinical setting. This review provides an update on the applications of intrabodies in misfolding diseases, with particular emphasis on an evaluation of their multiple and feasible modes of action.  相似文献   

13.
Simon Alberti 《朊病毒》2012,6(5):437-442
Evidence is now accumulating that damaged proteins are not randomly distributed but often concentrated in microscopically visible and functionally distinct inclusion bodies. How misfolded proteins are organized into these compartments, however, is still unknown. We have recently begun to investigate stress-inducible protein quality control (PQC) bodies in yeast cells. Surprisingly, we found that protein misfolding and aggregation were not sufficient to trigger body formation under mild heat stress conditions. Rather, compartment assembly also required the concerted action of molecular chaperones, protein-sorting factors and protein-sequestration factors, thus defining a minimal machinery for spatial PQC. Expression of this machinery was limited to times of acute stress through rapid changes in mRNA abundance and a proteasomal feedback mechanism. These findings demonstrate that yeast cells can control the amount of soluble misfolded proteins through regulated phase transitions in the cytoplasm, thus allowing them to rapidly adapt to changing environmental conditions.  相似文献   

14.
Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the β1 and β2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.  相似文献   

15.
《朊病毒》2013,7(5):437-442
Evidence is now accumulating that damaged proteins are not randomly distributed but often concentrated in microscopically visible and functionally distinct inclusion bodies. How misfolded proteins are organized into these compartments, however, is still unknown. We have recently begun to investigate stress-inducible protein quality control (PQC) bodies in yeast cells. Surprisingly, we found that protein misfolding and aggregation were not sufficient to trigger body formation under mild heat stress conditions. Rather, compartment assembly also required the concerted action of molecular chaperones, protein-sorting factors and protein-sequestration factors, thus defining a minimal machinery for spatial PQC. Expression of this machinery was limited to times of acute stress through rapid changes in mRNA abundance and a proteasomal feedback mechanism. These findings demonstrate that yeast cells can control the amount of soluble misfolded proteins through regulated phase transitions in the cytoplasm, thus allowing them to rapidly adapt to changing environmental conditions.  相似文献   

16.
Protein aggregation is a hallmark of over 30 human pathologies. In these diseases, the aggregation of one or a few specific proteins is often toxic, leading to cellular degeneration and/or organ disruption in addition to the loss-of-function resulting from protein misfolding. Although the pathophysiological consequences of these diseases are overt, the molecular dysregulations leading to aggregate toxicity are still unclear and appear to be diverse and multifactorial. The molecular mechanisms of protein aggregation and therefore the biophysical parameters favoring protein aggregation are better understood. Here we perform an in silico survey of the impact of human sequence variation on the aggregation propensity of human proteins. We find that disease-associated variations are statistically significantly enriched in mutations that increase the aggregation potential of human proteins when compared to neutral sequence variations. These findings suggest that protein aggregation might have a broader impact on human disease than generally assumed and that beyond loss-of-function, the aggregation of mutant proteins involved in cancer, immune disorders or inflammation could potentially further contribute to disease by additional burden on cellular protein homeostasis.  相似文献   

17.
Some of the most prevalent human degenerative diseases appear as a result of the misfolding and aggregation of proteins. Compelling evidence suggest that misfolded protein aggregates play an important role in cell dysfunction and tissue damage, leading to the disease. Prion protein (Prion diseases), amyloid-beta (Alzheimer's disease), alpha-synuclein (Parkinson's disease), Huntingtin (Huntington's disease), serum amyloid A (AA amyloidosis) and islet amyloid polypeptide (type 2 diabetes) are some of the proteins that trigger disease when they get misfolded. The recent understanding of the crucial role of misfolded proteins as well as the structural requirements and mechanism of protein misfolding have raised the possibility that these diseases may be transmissible by self-propagation of the protein misfolding process in a similar way as the infamous prions transmit prion diseases. Future research in this field should aim to clarify this possibility and translate the knowledge of the basic disease mechanisms into development of novel strategies for early diagnosis and efficient treatment.  相似文献   

18.
Misfolding and aggregation of prion proteins is linked to a number of neurodegenerative disorders such as Creutzfeldt-Jacob disease (CJD) and its variants: Kuru, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. In prion diseases, infectious particles are proteins that propagate by transmitting a misfolded state of a protein, leading to the formation of aggregates and ultimately to neurodegeneration. Prion phenomenon is not restricted to humans. There are a number of prion-related diseases in a variety of mammals, including bovine spongiform encephalopathy (BSE, also known as “mad cow disease”) in cattle. All known prion diseases, collectively called transmissible spongiform encephalopathies (TSEs), are untreatable and fatal. Prion proteins were also found in some fungi where they are responsible for heritable traits. Prion proteins in fungi are easily accessible and provide a powerful model for understanding the general principles of prion phenomenon and molecular mechanisms of mammalian prion diseases. Presently, several fundamental questions related to prions remain unanswered. For example, it is not clear how prions cause the disease. Other unknowns include the nature and structure of infectious agent and how prions replicate. Generally, the phenomenon of misfolding of the prion protein into infectious conformations that have the ability to propagate their properties via aggregation is of significant interest. Despite the crucial importance of misfolding and aggregation, very little is currently known about the molecular mechanisms of these processes. While there is an apparent critical need to study molecular mechanisms underlying misfolding and aggregation, the detailed characterization of these single molecule processes is hindered by the limitation of conventional methods. Although some issues remain unresolved, much progress has been recently made primarily due to the application of nanoimaging tools. The use of nanoimaging methods shows great promise for understanding the molecular mechanisms of prion phenomenon, possibly leading toward early diagnosis and effective treatment of these devastating diseases. This review article summarizes recent reports which advanced our understanding of the prion phenomenon through the use of nanoimaging methods.Key words: protein misfolding, prion, atomic force microscopy, nanomedicine, force spectroscopy  相似文献   

19.
Baohui Jia  Yuying Wu  Yi Zhou 《朊病毒》2014,8(2):173-177
Protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative diseases. In addition to chaperone-mediated refolding and proteasomal degradation, the aggresome-macroautophagy pathway has emerged as another defense mechanism for sequestration and clearance of toxic protein aggregates in cells. Previously, the 14-3-3 proteins were shown to be indispensable for the formation of aggresomes induced by mutant huntingtin proteins. In a recent study, we have determined that 14-3-3 functions as a molecular adaptor to recruit chaperone-associated misfolded proteins to dynein motors for transport to aggresomes. This molecular complex involves a dimeric binding of 14-3-3 to both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3). As 14-3-3 has been implicated in various neurodegenerative diseases, our findings may provide mechanistic insights into its role in managing misfolded protein stress during the process of neurodegeneration.  相似文献   

20.
Eukaryotic cells must contend with a continuous stream of misfolded proteins that compromise the cellular protein homeostasis balance and jeopardize cell viability. An elaborate network of molecular chaperones and protein degradation factors continually monitor and maintain the integrity of the proteome. Cellular protein quality control relies on three distinct yet interconnected strategies whereby misfolded proteins can either be refolded, degraded, or delivered to distinct quality control compartments that sequester potentially harmful misfolded species. Molecular chaperones play a critical role in determining the fate of misfolded proteins in the cell. Here, we discuss the spatial and temporal organization of cellular quality control strategies and their implications for human diseases linked to protein misfolding and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号