首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
Species–environment relationships are key information for the development of planning and management strategies for conservation or restoration of ecosystems. Artificial neural networks (ANNs) are one widely applied type of species distribution model (SDM). Fuzzy neural networks (FNNs), that is, fuzzified ANNs, have been introduced to take into account the uncertainties inherent in fish behaviour and errors in input data. Despite their high predictive ability in modelling complex systems, FNNs cannot describe habitat preference curves (HPCs), although these are the basis for habitat quality assessment. The present study therefore aimed to evaluate the applicability of FNNs for modelling habitat preference and spatial distributions of Japanese medaka (Oryzias latipes), one of the most common freshwater fish in Japan. Three independent data sets were collected during a series of field surveys and used for model development and evaluation of FNNs. A weight decay backpropagation algorithm was additionally introduced, and its effects on the FNNs were evaluated on the basis of model performance and habitat preference information retrieved from the field observation data. Modified sensitivity analysis was applied to derive HPCs of the target fish. Application of weight decay backpropagation markedly reduced the variability of the model structures, improved the generalization ability of the FNNs, and resulted in well-converged and consistent HPCs that were similar to those evaluated by fuzzy habitat preference models. These results support the applicability of FNNs to habitat preference modelling, which can provide useful information on the habitat use by the target fish. Further study should focus on the effects of sources of uncertainty, such as zero abundance, on the SDMs and the resulting habitat preference evaluation.  相似文献   

2.
Habitat assessment considering habitat quality and quantity is a key approach in conservation and restoration works for biodiversity and ecosystems. In this regard, application of hydrodynamic model for modeling instream habitat conditions and machine learning (ML) methods for modeling habitat suitability of a target species can contribute to better modeling practices in ecohydraulics. Despite the importance of small streams for aquatic ecosystems, previous studies in ecohydraulics have been conducted mainly in medium to large rivers, often disregarding small-scale streams such as agricultural canals. The aim of this study is to demonstrate the applicability of a coupled use of ML and a two-dimensional (2D) hydrodynamic model for assessing spatial habitat heterogeneity in small-scale agricultural canals in Japan. Using abundance data of Japanese medaka (Oryzias latipes), four ML methods, namely artificial neural networks (ANNs), classification and regression trees (CARTs), random forests (RF) and support vector machines (SVMs), were applied to develop habitat suitability models considering water depth and flow velocity. A 2D hydrodynamic model was developed based on field surveys in two types of agricultural canals, namely earthen and concrete-lined canals. Information entropy was used for assessing the spatial heterogeneity of instream habitat conditions. As a result, the hydrodynamic models could model instream habitat conditions in a reasonable accuracy. Despite the differences in accuracies in habitat modeling, the four ML methods illustrated similar habitat suitability information for Japanese medaka. The coupled ecohydraulics modeling approach could quantify habitat quality and its spatial heterogeneity, based on which the differences between the earthen and concrete-lined canals were quantitatively assessed. This study demonstrated the applicability of ML-based habitat suitability evaluation and a 2D hydrodynamic model for modeling the spatial distribution of habitat suitability and assessing its spatial heterogeneity. Further study, assessing the spatial heterogeneity in various types of flows including natural/artificial and small/large streams, can contribute to establish quantitative criteria for an ecologically sound habitat and improved ecofriendly construction works in small-scale rivers and streams.  相似文献   

3.
稀有鮈鲫对不同生境的选择性偏好   总被引:1,自引:0,他引:1  
对不同生境的识别和选择性偏好是保障鱼类生存和繁衍的重要能力之一。以稀有鮈鲫(Gobiocypris rarus)为研究对象,使用沙、水草和石块在观测水缸中进行多种排列组合以构建不同的生境类型,基于在各区域的停留时长和中线跨越次数两项参数,测试稀有鮈鲫对不同生境类型的偏好以及营养状态、生境组成物数量、环境照度对该行为影响。结果表明,稀有鮈鲫对不同的生境类型具有明显的选择性偏好,对仅水草生境偏好程度最高,对仅石块生境的偏好程度最低。该偏好行为在24 h的禁食后变化不显著(P > 0.05),但生境组成物数量和环境照度对该行为具有显著影响(P < 0.05),其偏好程度随水草数量和照度的增加而增加,在包含8棵水草及1 000 lx的照度下最高。  相似文献   

4.
Spawning habitat of the endangered spined loach Cobitis taenia was studied in northwestern Germany. The distribution of eggs of the loach in the field was best correlated with the density of vegetation but had little correlation with current velocity, water depth, or bottom substrate. In the aquarium, the loach chose dense vegetation for an oviposition site, as inferred by the direct observations of spawning and the location of spawned eggs. It is concluded that such habitat specialization is an important element in the autecology of the endangered fish and a critical stage in the habitat requirements of its populations.  相似文献   

5.
Boldness and risk-taking behaviours in animals are important traits to obtain advantages such as habitation, food resources, reproductive success and social dominance. Risk-taking behaviour is influenced by physiological and environmental conditions; however, whether individual fish become bolder by the presence of conspecifics remains unknown. In this study, a light–dark preference test was conducted using medaka fish (Oryzias latipes) with or without a neighbouring conspecific. It was found that individual medaka male fish preferred a light environment and avoided a dark environment, whereas the display of a neighbouring conspecific enhanced the time the male spent in the dark environment (i.e., this condition encouraged risk-taking). The blood glucose level increased in fish confined to the dark condition but did not increase in light-preferring fish and risk-taking fish. Large somata expressing tyrosine hydroxylase, which is the rate-limiting enzyme in dopamine synthesis, were detected in the telencephalic and diencephalic brain regions in risk-taking medaka, whereas large somata were detected in the diencephalic region in medaka confined to the dark condition. These findings indicated that medaka is a good fish model to explore the central roles of dopaminergic neurons in the telencephalon and the diencephalon, which regulate risk-taking behaviour.  相似文献   

6.
Aspects of habitat selection in the mosquitofish gambusia affinis   总被引:1,自引:1,他引:0  
Laboratory experiments were performed to determine behavioral preferences of Gambusia affinis for habitat variables in partitioned aquaria. The fish preferred calm water, dark-colored substrates and subsurface vegetation providing lateral concealment. Floating cover, which obstructed access to the surface, was avoided. Lack of preference for real over plastic plant cover indicates that visual rather than chemical cues are involved. These laboratory preferences correspond to the reported microhabitat distribution of G. affinis in nature and indicate the presence of an active habitat preference, as opposed to passive habitat correlation, in this species. Species-specific habitat preferences, which may be narrower where a species occurs sympatrically with its congeners, probably form part of a reproductive isolating mechanism.  相似文献   

7.
Summary Three types of genes have been proposed to promote sympatric speciation: habitat preference genes, assortative mating genes and habitat-based fitness genes. Previous computer models have analysed these genes separately or in pairs. In this paper we describe a multilocus model in which genes of all three types are considered simultaneously. Our computer simulations show that speciation occurs in complete sympatry under a broad range of conditions. The process includes an initial diversification phase during which a slight amount of divergence occurs, a quasi-equilibrium phase of stasis during which little or no detectable divergence occurs and a completion phase during which divergence is dramatic and gene flow between diverging habitat morphs is rapidly eliminated. Habitat preference genes and habitat-specific fitness genes become associated when assortative mating occurs due to habitat preference, but interbreeding between individuals adapted to different habitats occurs unless habitat preference is almost error free. However, nonhabitat assortative mating, when coupled with habitat preference can eliminate this interbreeding. Even when several loci contribute to the probability of expression of non-habitat assortative mating and the contributions of individual loci are small, gene flow between diverging portions of the population can terminate within less than 1000 generations.  相似文献   

8.
Introductions of non-native predatory fishes can be a major driver of aquatic biodiversity loss. The largemouth bass Micropterus salmoides (L.) has been introduced throughout much of the world, thereafter negatively affecting native faunal communities owing to its predatory impact. To investigate the environmental factors affecting the predatory performance of invasive bass, we examined the stomach contents and habitat characteristics of bass in 15 irrigation farm ponds in northeastern Japan. The food habits of the bass populations differed among the studied ponds: the predominant prey items were fishes among bass in seven of the ponds, whereas aquatic invertebrates (mainly insects and zooplankton) were the predominant taxa in the diets of bass in the eight remaining ponds, with the onset of piscivory related to body size. The results of multivariate analysis indicated that the extent to which the bass consumed fish was positively associated with fish prey abundance and negatively associated with percentage of aquatic vegetation coverage. We suggest that the extent of aquatic vegetation coverage strongly influenced the predation efficiency of bass in the ponds. These findings might be employed to assess a pond ecosystem’s vulnerability to invasive largemouth bass and to reduce the predator’s impact on native fish species by improvements to the habitat.  相似文献   

9.
10.

Introduction

Females having a longer telomere and lifespan than males have been documented in many animals. Such linkage however has never been reported in fish. Progressive shortening of telomere length is an important aging mechanism. Mounting in vitro evidence has shown that telomere shortening beyond a critical length triggered replicative senescence or cell death. Estrogen has been postulated as a key factor contributing to maintenance of telomere and sex-dependent longevity in animals. This postulation remains unproven due to the lack of a suitable animal system for testing. Here, we introduce a teleost model, the Japanese medaka Oryzias latipes, which shows promise for research into the molecular mechanism(s) controlling sex difference in aging.

Results

Using the medaka, we demonstrate for the first time in teleost that (i) sex differences (female?>?male) in telomere length and longevity also exist in fish, and (ii) a natural, ‘menopause’-like decline of plasma estrogen was evident in females during aging. Estrogen levels significantly correlated with telomerase activity as well as telomere length in female organs (not in males), suggesting estrogen could modulate telomere length via telomerase activation in a sex -specific manner. A hypothetical in vivo ‘critical’ terminal restriction fragment (TRF, representing telomere) length of approximately 4 kb was deduced in medaka liver for prediction of organismal mortality, which is highly comparable with that for human cells. An age conversion model was also established to enable age translation between medaka (in months) and human (in years). These novel tools are useful for future research on comparative biology of aging using medaka.

Conclusion

The striking similarity in estrogen profile between aging female O. latipes and women enables studying the influence of “postmenopausal” decline of estrogen on telomere and longevity without the need of invasive ovariectomy. Medaka fish is advantageous for studying the direct effect of increased estrogen on telomere length and longevity without the breast cancer complications reported in rodents. The findings strongly support the notion that O. latipes is a unique non-mammalian model for validation of estrogenic influence on telomere and longevity in vertebrates. This laboratory model fish is of potential significance for deciphering the ostensibly conserved mechanism(s) of sex-associated longevity in vertebrates.
  相似文献   

11.
A five-year study examined the responses of submerged aquatic vegetation (SAV), emergent vegetation, and largemouth bass (Micropterus salmoides) to variations in water level in a large lake in Florida, USA. SAV was assessed using a combined transect survey/spatial mapping approach, emergent vegetation was quantified with aerial photography and GIS, and bass were surveyed by electro-shocking. During the period leading up to this study (1995–1999), water levels were high in the lake, and the SAV was reduced in spatial extent and biomass, compared to its condition in the early 1990s. Spatial extent of emergent vegetation also was low, and largemouth bass surveys indicated low densities and failure to recruit young fish into the population. This was attributed to the lack of critical vegetative habitat. In spring 2000, the lake was lowered by discharging water from major outlets, and this was followed by a regional drought. Water levels dropped by 1m, and there was widespread development of Chara lawns in shoreline areas, with coincident increases in water clarity. There was some germination of vascular SAV, but Chara was the extreme dominant, such that structural complexity remained low. There was no substantive improvement in bass recruitment. During 2001, water levels declined further, and emergent plants germinated in exposed areas of the lake bottom. SAV was restricted to sites farther offshore, and continued to be dominated by Chara. There again was no bass response. In 2002, conditions changed when water levels increased to a moderate depth, flooding shoreline habitat to 0.5m. Vascular SAV increased in biomass and spatial extent, such that the community developed a high structural complexity. At the same time, emergent aquatic plants developed dense stands along the western shoreline. Largemouth bass had a strong recruitment of young fish for the first time in 5years. Recruitment continued to be successful in 2003, when spatial extent of SAV was somewhat reduced by higher water but total biomass and diversity remained high. These results demonstrate an important effect of inter-annual variation in water depth on the population dynamics of aquatic plants and fish in a subtropical lake.  相似文献   

12.
In conservation biology there is a basic need to determine habitat suitability and availability. Astroblepus ubidiai (Siluriforms), the only native fish in the highlands of Imbabura province in the Ecuadorian Andes, was abundant in the past in the Imbakucha watershed and adjacent drainages, but currently it is restricted to a few isolated refuges. Conservation actions are needed if this unique fish is to persist. A Habitat Suitability Index (HSI) for the species has been developed in order to aid management decisions. In this HSI model biomass density (B) was selected as a better indicator of habitat quality than either abundance or density. A population well-being index (PI) was constructed with the combination of B and an indicator of fish health (proportion of fish in the population with parasites and deformities). Based in other models of benthic fish the habitat variables current velocity, flow, depth, width, cover, invertebrate composition, vegetation type, terrestrial vegetation, land use, substrate, temperature, pH, TDS, oxygen, altitude, and slope were included in the analysis. An anthropogenic perturbation index (H) and a fragment isolation index (FII) were developed and included as habitat variables as well. The HSI model was applied to refuges and a sample of 15 aquatic bodies without fish populations within the study region. From the sampled sites without A. ubidiai 26.6% presented low quality, and the remaining 73.3% had medium quality according to the HSI estimated. Good quality habitat for dispersal, escape or translocations is rare in the region. The low HSIs estimated in some of the refuges suggests that current populations are not settled in the most favorable habitat but in the habitat least favorable to the agents of decline.  相似文献   

13.
An analysis was made of the associations with local habitat features of barbels ( Barbus sp.) of a Mediterranean river basin. The analysis was based on the presence data from sampling the upper, middle, and lower reaches of 31 rivers in the middle Guadiana River basin (south‐west Spain). Numerous local habitat variables were determined, including the river's size and substratum, physicochemical variables of water, and the aquatic and riparian vegetation. For each species, a univariate analysis was performed using preference indices, and logistic regression was used to construct a parsimonious multivariate model and Gaussian response models with the most influential variables, quantifying the species' limits of tolerance. Distinct habitat associations for every species were obtained, mainly relating Barbus comiza to the larger habitats and higher water levels, Barbus microcephalus to the maintenance of lotic conditions and Barbus sclateri to more fluctuating rivers. Barbus steindachneri showed a different habitat relationship from that of the genetically almost identical B. comiza . Cover played a significant role in all but B. comiza .  相似文献   

14.
We examined the anuran diversity of 31 ponds (30 located on the border of soybean cropland and one within a protected forest) in mid-western Entre Ríos Province (Argentina). Moreover, each species found was characterised with respect to its vertical location. Using principal component (PCA) and canonical correspondence analyses (CCA) we quantified associations between species diversity and habitat and spatial variables. A total of 21 anuran species belonging to four families (Microhylidae, Bufonidae, Leptodactylidae and Hylidae) were detected in ponds surrounded by soybean croplands. PCA generated three principal components, which together explained variation in anuran diversity across the agricultural ponds and control site. Negative values of PC-1 described the smaller ponds with narrower hedgerow and monospecific shore vegetation. PC-2 had high loading on pond depth, and PC-3 had negative loading on air temperature. CCA showed a very strong association between the two data sets. We found all guilds related with pond area. Indeed, we found that arboreal species were recorded in large ponds with higher values of shore vegetation index and presence of wider hedgerow. Moreover, a higher number of terrestrial species was found to relate to large pond areas and greater shore vegetation diversity. Finally, aquatic species were related to pond area, shore vegetation index and depth. Anuran diversity across agricultural ponds of mid-western Entre Ríos Province can be affected by local habitat factors such as reduction in pond size and depth, shore vegetation richness, width of hedgerow and air temperatures. Management of anurans to reverse recent declines will require defining high-quality habitat for individual species or group of species, followed by efforts to retain or restore these aquatic habitat. The maintenance of shore vegetation of ponds and hedgerows may increases the number of species and diversity of anurans within agricultural landscapes.  相似文献   

15.

Introduction

Villin 1 is an actin-regulatory protein involved in the formation of microvilli of mammalian enterocytes. The microvilli, finger-like protrusions, are more abundant on the apical surfaces of gill ionocytes in various freshwater (FW) teleosts than in seawater (SW) fishes. However, the plasticity in the mechanisms of microvillus formation in the gill ionocytes are poorly understood, and the actin-regulatory proteins involved in the formation of microvilli have not been identified in fishes. The present study used the euryhaline medaka (Oryzias dancena) as a model to explore the role of a homolog of villin 1 in the actin-organization of cellular morphologies induced by decreasing salinities.

Results

By ultrastructural observation, there are numerous actin filaments organized on the apical cortex of ion-absorptive ionocytes in the FW-acclimated medaka. From gills of the euryhaline medaka, we have identified the VILL sequence. The phylogenetic tree and functional domains suggest that VILL is the homolog of villin 1 in fishes. Immunofluorescence using a specific antibody revealed that VILL was specifically localized to the apical region of gill ionocytes along with microvilli in the FW medaka, but not in SW fish. The expression levels of Odvill mRNA and VILL protein were higher in the gills of the FW individuals than in the SW group and were induced when fish were transferred from SW to FW. A morpholino oligonucleotide for VILL knockdown eliminated the apical protrusions of ionocytes and pavement cells in the trunk epithelia of embryos.

Conclusions

From a novel aspect of cytoskeletal functions, our findings highlighted the important role of VILL protein in the ionoregulation of aquatic vertebrates in response to different osmotic challenges. This study is the first to show that the expression of VILL is associated with the formation of microvilli in the absorptive ionocytes of a euryhaline fish. Loss-of-function experiments showed that the distribution of VILL may represent the molecular link between the cytoskeletal organization and cellular morphology of the absorptive ionocytes during hypoosmotic adaptation in aquatic vertebrates.  相似文献   

16.
Different environmental conditions may lead to diverse morphological, behavioral, and physiological adaptations of different populations of the same species. Lighting conditions, for example, vary vastly especially between aquatic habitats, and have been shown to elicit adaptations. The availability of short-wave ultraviolet (UV) light is especially fluctuating, as UV wavelengths are attenuated strongly depending on water properties. The island of North Uist, Scotland, comprises 2 differential habitat types, tea-stained and clear-water lakes, varying considerably in UV transmission. In previous studies, wild-caught 3-spined stickleback Gasterosteus aculeatus populations (3 populations of each habitat type) were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions. The results revealed a habitat-dependent preference of UV cues during shoal choice (tea-stained populations: preference for UV-absent condition in tea-stained water; clear-water populations: no preference in clear-water) but an overall preference for UV-present conditions during mate choice. To assess genetic influences on these behavioral patterns, similar experiments were conducted with lab-bred F1-generations of the same stickleback populations that were raised in a common environment (i.e. standardized clear-water conditions). Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions (only in tea-stained water), while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water. Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment. The results for both shoaling- and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks, thus hinting at a genetic basis for the preference patterns.  相似文献   

17.
18.
  • 1 For aquatic species with highly dispersive offspring, the addition of new individuals into an area (recruitment) is a key process in determining local population size so understanding the causes of recruitment variability is critical. While three general causative mechanisms have been identified (the supply of individuals, habitat selection and mortality), we have a limited understanding of how variation in each is generated, and the consequences this may have for the spatial and temporal distribution of recruits.
  • 2 We examined whether active habitat selection during settlement could be the cause of variability in populations of two diadromous fish species using a field survey and laboratory‐based choice experiments. If larval behaviour is important, we predicted there would be inter‐specific differences in abundance between sites during the survey, and that larvae would prefer water collected from sites with higher conspecific abundances during the experiments.
  • 3 During the field survey, significant differences were detected between two rivers (the Cumberland and Grey), with one species (Galaxias maculatus) found in higher abundances at one site (the Cumberland River) while comparable numbers of a closely related species (Galaxias brevipinnis) were caught at both sites. Laboratory choice experiments were conducted to determine whether larval preferences during settlement could be the cause of these differences. G. maculatus larvae showed a preference for freshwater over saltwater, indicating that the fish may be responding to reduced salinities around river mouths during settlement. The results of a second experiment were consistent with the notion that larval preferences could be the mechanism driving differences in the populations of the two rivers, with G. maculatus preferring water collected from the Cumberland River while G. brevipinnis did not prefer water from either river.
  • 4 These results demonstrate that active habitat selection may be important in establishing spatial patterns of larvae at settlement, and that multiple cues are likely to be involved. This study also demonstrates that the behaviours exhibited by individuals can strongly influence the structure and dynamics of populations of aquatic species with complex life cycles.
  相似文献   

19.
We analyzed the feeding preference of Cnesterodon decemmaculatus, a small‐bodied poecilid native from the Rio de la Plata and proximate Atlantic Basins in South America. This species has a wide distribution in Uruguayan water bodies but its effectiveness as a predator of mosquito larvae has not been tested. In laboratory trials, five aquatic invertebrates were offered simultaneously as potential prey to fish: Daphnia pulex (Cladocera), copepods, two different instars of mosquito larvae (Culex pipiens), and the 4th instar of Chironomidae larvae. Preference was measured by the Chesson's electivity index (α). In order to determine differences in prey preference according to fish size, individuals ranging from 9.5 mm to 35.3 mm were classified in three different body size classes: small, medium, and large. Small fish showed preference for copepods, while medium‐sized fish preferred the smallest mosquito larvae instars and Chironomidae larvae. We conclude that C. decemmaculatus is a zooplankton facultative‐feeder fish that prefers large‐bodied zooplankton but is a weak predator of mosquito larvae. Thus, the introduction of C. decemmaculatus as a biological‐control agent in natural environments is not an effective strategy.  相似文献   

20.
The mean column velocity preference of juvenile Atlantic salmon Salmo salar (LF 30–55 mm) was investigated by observing their spatial pattern of habitat use in a laboratory flume while varying discharge (Q) over a 18‐fold range (Q=2·6–46·8l s‐1). Based on 341 fish observations at three discharges (Q=2·6, 15·0 and 46·8l s‐1), three separate velocity preference curves were developed using standard procedures. The mean column velocities measured at 0·6 depth for the fish positions at the set low, medium and high discharges had medians of 7, 10 and 24 cm s‐1, respectively, and varied significantly between the discharges. Across the range of flows, the fish utilized mean column velocities between 0 and 56 cm s‐1, but the three velocity preference curves differed. Differences between juvenile Atlantic salmon use of habitat, defined according to mean column velocities at different discharges, were greatest at the lower end of the available range of velocities (<20 cm s‐1). Weighted usable area (WUA), the output of the instream flow model PHABSIM that is used to describe the available habitat at a given discharge, was calculated for the flume using the preference curves built at the three set discharges. The model was highly sensitive to differences between the three preference curves and WUA varied by up to a two‐fold difference. Furthermore, habitat‐discharge relationships derived from the three preference curves were very different. Predicted habitat losses across the modelled range of discharges varied by up to 150% depending upon which velocity preference curve was used in the model. Thus, the assumption that a single preference curve can be applied across a range of discharges is not valid and is likely to result in large errors when employing PHABSIM and other models that use similar principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号