首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piscirickettsiosis pathogenesis was examined using some tissues as entry portals of Piscirickettsia salmonis in coho salmon. Juvenile fish, weighing approximately 8.4 g, were used in this trial. Inocula were prepared using the strain SLGO-95 of P. salmonis. The micro-organism was cultured in the CHSE-214 cell line as described by Fryer et al. (1990) and doses containing 10(4.7) and 10(3.7) TCID50 were prepared. Each dose was used to infect the fish via skin, gills and intestine. Skin and gills were exposed by calibrated drops, and the intestine by an intubation through the anal opening. Some fish were injected intraperitoneally with the same P. salmonis doses, as positive virulence controls. Sham-inoculated fish for each of the tested routes were also included as negative controls. Piscirickettsiosis was experimentally reproduced with all the inoculation methods. Cumulative mortalities and survival analyses showed that the most effective entry portal was skin followed by intestinal intubation and finally by gill infection.  相似文献   

2.
A Scottish isolate of Piscirickettsia salmonis (SCO-95A), previously shown by intraperitoneal injection to have a lethal dose (LD50) of < 2 x 10(3) infectious rickettsial units, was tested for virulence by bath challenge, surface application to the skin, or dorsal median sinus injection. Atlantic salmon Salmo salar post-smolts were used in all experiments, and exposure to 1 x 10(5) tissue culture infective doses (TCID) of P. salmonis ml(-1) for 1 h in a bath challenge resulted in only 1 mortality, 18 d later, in 10 exposed fish. Application of 2.5 x 10(6) TCID of P. salmonis SCO-95A to paper discs on the skin failed to induce any mortalities within 42 d. Intraperitoneally, fish were administered vaccines containing 10(9) heat-inactivated (100 degrees C, 30 min) or 10(9) formalin-inactivated P. salmonis SCO-95A in adjuvant, with a control group receiving phosphate-buffered saline (PBS) in adjuvant. After an induction period of over 6 mo fish were challenged by injection of P. salmonis into the dorsal median sinus. Mortalities in the control group reached 81.8% and the heat-inactivated and formalin-inactivated vaccines gave significant protection from P. salmonis, with relative percentage survivals of 70.7 and 49.6%, respectively. The nature of the protective antigen is unknown, but could be lipopolysaccharide or a heat-stable outer membrane protein. Fish that survived a dorsal median sinus challenge of P. salmonis or were cohabitants showed a strong immune response to P. salmonis.  相似文献   

3.
Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed that V. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.  相似文献   

4.
Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle for disease transmission and that gills are the main portals of entry into the eel body. The pathogen mixed with food can also come into the fish through the gastrointestinal tract and develop the disease. These conclusions were supported by field data obtained during a natural outbreak in which we were able to isolate this microorganism from tank water for the first time. The examination of some survivors from experimental infections by indirect immunofluorescence and scanning electron microscopy showed that V. vulnificus serovar E formed a biofilm-like structure on the eel skin surface. In vitro assays demonstrated that the ability of the pathogen to colonize both hydrophilic and hydrophobic surfaces was inhibited by glucose. The capacity to form biofilms on eel surface could constitute a strategy for surviving between epizootics or outbreaks, and coated survivors could act as reservoirs for the disease.  相似文献   

5.
Lepeophtheirus salmonis is an ectoparasitic copepod that causes serious disease outbreaks in both wild and farmed salmonids. As the relationship between L. salmonis and its hosts is not well understood, the current investigation was undertaken to investigate whether any immunomodulatory compounds could be identified from secretions of L. salmonis. By incubating live L. salmonis adults with the neurotransmitter dopamine in seawater, we were able to obtain secretions from the parasite. These were analyzed by RP-HPLC column, as well as LC-MS. L. salmonis secretions contained a compound with the same retention time and mass of PGE(2). The identity of this compound as PGE(2) was confirmed by MS-in source dissociation. The concentrations of PGE(2) in L. salmonis secretions ranged from 0.2 to 12.3 ng/individual and varied with incubation temperature and time kept off the host. Prostaglandin E(2) is a potent vasodilator and thought to aid in parasite evasion from host immune responses. This is the first reported evidence of prostaglandin production in parasitic copepod secretions and its implications for the host-parasite relationship are discussed.  相似文献   

6.
Piscirickettsia salmonis is the most important pathogen in salmonid mariculture in Chile. Since it was reported numerous piscirickettsiosis outbreaks have occurred differing in virulence and mortality. Genetic variability of P. salmonis isolates has been suggested as one factor to explain this. However until now isolates obtained from outbreaks have not been analyzed. Knowledge of genetic variability of P. salmonis is very limited and also a useful screening method for genetic variations in isolates without sequencing is not available. Here we report an electrophoretic analysis of internal transcribed spacer region (ITS) of eleven P. salmonis isolates obtained from different salmon species and places in southern Chile. When PCR products were submitted to polyacrylamide gel electrophoresis (PAGE) a characteristic electrophoretic pattern was observed, distinguishable from ITS of other bacteria, including fish pathogens. Even though this pattern is conserved in all isolates, a difference in ITS electrophoretic mobility was observed, determining clearly two groups: ITS with higher or with lower electrophoretic mobility, including LF-89 and EM-90 isolates, respectively. A higher ITS sequence homology inside each group was shown by heteroduplex mobility assay (HMA). Our results show that genetic variability between Chilean P. salmonis isolates allows the differentiation of two groups with similar behavior observed previously when six P. salmonis isolates from three geographic origins were analyzed by 16S, 23S and ITS sequencing. PAGE analysis of ITS and HMA could be a basis to develop an assay for screening genetic variability between P. salmonis isolates.  相似文献   

7.
Reported strains of Piscirickettsia salmonis, a pathogen of salmonid fishes, were analyzed by amplifying part of the internal transcribed spacer (ITS) of the ribosomal RNA (rRNA) operon followed by denaturing gradient gel electrophoresis (DGGE) of the amplicons. All amplified fragments differing in sequence were distinguished by migration during DGGE. A simpler format, constant denaturant gel electrophoresis (CDGE), allowed the same diagnostic distinctions among strains. Sampling during 1997 and 1998 of salmonids from 5 different sites on and near Chiloé Island in southern Chile displaying piscirickettsiosis revealed only P. salmonis resembling LF-89, the type strain first isolated in 1989. These observations are encouraging for control strategies, which might otherwise be compromised by unpredictable shifts of P. salmonis types in salmon farms. A competitive PCR assay offered insight about the power of PCR for quantification and about specific tissue invasiveness by this intracellular pathogen. This approach revealed that the PCR could amplify approximately 1 to 10 P. salmonis genome equivalents against a background of > 99.9% salmonid DNA. It also raised the possibility that the salmonid brain is an important site for P. salmonis survival, with its bacterial load in 1 individual having been about 100 times the loads observed in liver and kidney. Pathogen detection by competitive PCR in a surface seawater sample from a netpen in use indicated a density of about 3000 to 4000 P. salmonis cells (or their DNA remnants) 1(-1). Such quantitative estimates should aid decisions about disease prevention and management as, for example, choice of netpen sites following fallow periods and certification of ova, which are known conduits of infection.  相似文献   

8.
Spironucleus salmonicida is a diplomonad flagellate known to cause systemic infections in farmed salmonids. In northern Norway, outbreaks of spironucleosis in farmed Atlantic salmon Salmo salar have been a recurring problem. Common to all these outbreaks was the origin of smolts: all came from the same farm. In the present study, wild Arctic char Salvelinus alpinus and brown trout Salmo trutta were sampled from the lakes used as a water source for the smolt supplier. In addition, smolt and three-spined sticklebacks Gasterosteus aculeatus were sampled from the smolt farm. Bile and intestinal contents from the sampled fish were examined by light microscopy and PCR. Spironucleus salmonicida was identified in both wild Arctic char and brown trout from the lakes used as water sources by the smolt farm, suggesting that the farmed fish were exposed to this pathogen before transfer to the sea. Spironucleus barkhanus and Spironucleus salmonis were also identified in the sampled fish. The present study also demonstrated that infections with multiple Spironucleus species are present in wild salmonids. No indications of disease related to diplomonad infections were observed in the wild fish, suggesting that wild salmonids are reservoir hosts of Spironucleus salmonicida.  相似文献   

9.
Piscirickettsia salmonis is an obligate intracellular bacterial pathogen of salmonid fish and the etiological agent of the aggressive disease salmonid rickettsial syndrome. Today, this disease, also known as piscirickettsiosis, is the cause of high mortality in net pen-reared salmonids in southern Chile. Although the bacteria can be grown in tissue culture cells, genetic analysis of the organism has been hindered because of the difficulty in obtaining P. salmonis DNA free from contaminating host cell DNA. In this report, we describe a novel procedure to purify in vitro-grown bacteria with iodixanol as the substrate to run differential centrifugation gradients which, combined with DNase I digestion, yield enough pure bacteria to do DNA analysis. The efficiency of the purification procedure relies on two main issues: semiquantitative synchrony of the P. salmonis-infected Chinook salmon embryo (CHSE-214) tissue culture cells and low osmolarity of iodixanol to better resolve bacteria from the membranous structures of the host cell. This method resulted in the isolation of intact piscirickettsia organisms and removed salmon and mitochondrial DNA effectively, with only 1.0% contamination with the latter.  相似文献   

10.
Mortality among hatchery-reared juvenile white seabass Atractoscion nobilis in southern California, USA, was associated with infections by a Piscirickettsia salmonis-like organism (WSPSLO). Infected fish had no consistent external signs other than pale gills, lethargy and impaired swimming behavior. Internally, the kidney and spleen were enlarged, and some fish had livers with multiple pale foci. Smears from infected kidney, liver, and spleen stained with Wright-Giemsa had intracytoplasmic coccoid organisms, often in pairs, that ranged in size from 0.5 to 1.0 microm. Microscopic lesions included multifocal hepatic, renal, and splenic necrosis, and intralesional macrophages often contained the WSPSLO. The bacterium was isolated from infected fish on cell lines of salmonid (CHSE-214) and white seabass (WSBK) origin. The WSPSLO induced plaque formation and destroyed the cell monolayers within 10 to 14 d incubation at temperatures of 15 and 20 degrees C. The bacterium retained infectivity for cell lines up to 14 d at 4 and 13 degrees C, up to 7 d at 20 degrees C, but it was inactivated at 37 and 56 degrees C within 24 and 1 h, respectively. Freezing at -20 degrees C reduced infectivity by 100-fold. Dehydration and resuspension in distilled water completely inactivated the bacterium. In contrast, the WSPSLO retained nearly all of its infectivity for CHSE-214 cells following a 72 h period in seawater at 20 degrees C. Polyclonal rabbit antibodies made to the WSPSLO reacted specifically in indirect fluorescent antibody tests (IFAT) with the bacterium in cell cultures and smears from infected fish tissues. Tissue smears from infected salmon or CHSE-214 cells with P. salmonis reacted weakly with the anti-WSPSLO serum. Conversely, polyclonal anti-P. salmonis serum produced a weakly positive reaction with the WSPSLO from infected CHSE-214 cells. The WSPSLO as propagated in CHSE-214 cells was highly virulent for juvenile coho salmon Oncorhynchus kisutch, inducing 80% mortality within 10 d of intraperitoneal injection of 10(2.5)-50% tissue culture infectious doses per fish. We conclude that the bacterium from white seabass possesses antigenic differences from P. salmonis yet possesses virulence for salmon equal to known strains of P. salmonis.  相似文献   

11.
Piscirickettsia salmonis is a pathogenic bacterial agent causing septicaemic disease in salmon. Since its isolation in Chile in 1989, P. salmonis has continually produced high mortality rates in salmon farms. Little information exists regarding the mechanisms of vertical transmission of this pathogen. Experimental vertical transmission was established in the present study by inoculation of male and female rainbow trout broodstock with P. salmonis. The bacterium was subsequently detected using indirect immunofluorescence in milt and coelomic fluid of the majority of inoculated broodstock (14/15). Bacteria were detected in the fry when 1 or both parents were inoculated, although none of the infected fry presented signs of the disease. P. salmonis was also detected in progeny obtained through fertilisation ova from non-inoculated females incubated in a medium containing a bacterial suspension, demonstrating transmission during the process of fertilisation. Ova infected in vitro were examined at sample periods from 30 s to 60 min using scanning electron microscopy. This demonstrated that the bacterium attaches to the ova by means of membrane extensions, structures which we have called 'piscirickettsial attachment complex' (PAC) and which would allow later penetration into the ovum.  相似文献   

12.
Immunized rabbit serum adsorbed in live catfish was used in indirect fluorescent antibody test (IFAT) to detect developmental life stages of Henneguya ictaluri n. sp. This myxozoan parasite is associated with proliferative gill disease in channel catfish Ictalurus punctatus (Rafinesque) in the USA. Specific pathogen free fingerlings were experimentally infected with the actinosporean stage of H. ictaluri and necropsied 24, 48, 72, and 96 h post-infection. At 24 h post-infection parasite stages were observed primarily in the gastric mucosa and submucosa but were also observed in the skin and buccal cavity. Ovoid organisms were detected in heart and blood vessels of the liver. From 48 to 72 h after exposure, fewer fluorescent organisms were located in all organs, with the exception of the gills, than were observed at 24 h. These organisms appeared to be degenerating except for those in the gills, which appeared to be multinucleated. By 96 h post-infection, the organisms could not be detected in fish tissues with the exception of the stages in the gills, which appeared to be a preferred site of development. Throughout the entire 96 h period of study, no stage of the organism was detected in the brain. Infected tissue sections treated with non-immune rabbit serum and non-infected tissue sections treated with immune rabbit sera all showed negative results by IFAT.  相似文献   

13.
团头鲂黏蛋白基因Muc5b克隆及表达分析   总被引:1,自引:0,他引:1  
摘要:黏液(mucus)在鱼体防御外界病原侵袭、信息传递、调节渗透压等方面具有重要作用。黏蛋白(mucin)作为黏液的基础骨架组分,与其相关的研究正受到广泛的关注。在本研究中,作者克隆获得团头鲂(Megalobrama amblycephala)Muc5b mRNA 的部分序列3895 bp,并通过qRT-PCR分析了Muc5b在团头鲂不同组织的表达分布及其在捕捞应激后在鳃和表皮中的表达变化。序列分析结果显示,团头鲂Muc5b与鲤等脊椎动物的Muc5b有较高的同源性,其N端含有黏液蛋白特异性结构域:三个VWD区域,三个C8区域,二个TIL区。组织表达分析结果表明,Muc5b在鳃和表皮表达量相对较高,在脑、脾、肾中表达水平较低,在肝、肠道几乎不表达。捕捞应激后1 h时鳃中Muc5b显著降低(P < 0.05),24 h时恢复初始水平;表皮中4 h时Muc5b显著上升(P < 0.05),24 h时恢复到初始水平。  相似文献   

14.
We have isolated and sequenced the genes encoding the heat shock proteins 60 (Hsp60) and 70 (Hsp70) of the salmon pathogen Piscirickettsia salmonis. The sequence analysis revealed the expected two open reading frames that encode proteins with calculated molecular weights of 60,060 and 70,400. The proteins exhibit a 70-80% homology with other known prokaryotic Hsp60 and Hsp70 sequences. The coding regions have been expressed in E. coli as thioredoxin fusion proteins. Both recombinant proteins were shown to elicit a humoral response when injected intraperitoneally in Atlantic salmon and also conferred protection to fish challenged with P. salmonis. The present data will facilitate further studies on the involvement of heat shock proteins in protective immunity of fish to infection by P. salmonis and their potential use in recombinants vaccines against this intracellular pathogen.  相似文献   

15.
Vibrio harveyi is a marine bacterial pathogen responsible for episodic epidemics generally associated with massive mortalities in many marine organisms, including the European abalone Haliotis tuberculata. The aim of this study was to identify the portal of entry and the dynamics of infection of V. harveyi in the European abalone. The results indicate that the duration of contact between V. harveyi and the European abalone influences the mortality rate and precocity. Immediately after contact, the epithelial and mucosal area situated between the gills and the hypobranchial gland was colonized by V. harveyi. Real-time PCR analyses and culture quantification of a green fluorescent protein-tagged strain of V. harveyi in abalone tissues revealed a high density of bacteria adhering to and then penetrating the whole gill-hypobranchial gland tissue after 1 h of contact. V. harveyi was also detected in the hemolymph of a significant number of European abalones after 3 h of contact. In conclusion, this article shows that a TaqMan real-time PCR assay is a powerful and useful technique for the detection of a marine pathogen such as V. harveyi in mollusk tissue and for the study of its infection dynamics. Thus, we have revealed that the adhesion and then the penetration of V. harveyi in European abalone organs begin in the first hours of contact. We also hypothesize that the portal of entry of V. harveyi in the European abalone is the area situated between the gills and the hypobranchial gland.  相似文献   

16.
Prevalence and intensity of Gyrodactylus colemanensis and G. salmonis (Monogenea) parasitizing juvenile/adult brook trout Salvelinus fontinalis, rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, and Atlantic salmon Salmo salar at 3 localities over an 8 km stretch in the South River, Nova Scotia, Canada, were calculated 4 times over a 9 mo period (October 2009, December 2009, March 2010, June 2010). G. colemanensis was on all 4 salmonids (endemic and non-endemic), while G. salmonis parasitized mostly S. fontinalis (endemic) and occasionally S. trutta (non-endemic). At an upstream locality, beyond a waterfall barrier, in a small tributary of the main river, G. colemanensis was more common than G. salmonis. In the main river, 7 km downstream, prevalence of G. colemanensis on S. fontinalis was comparable, or higher, than that of G. salmonis, while intensity of G. salmonis was higher than that of G. colemanensis. Downstream a further 1 km, in a tributary of the main river, both prevalence and intensity of G. salmonis on brook trout were higher than those of G. colemanensis. Stocks at a local trout hatchery had only G. colemanensis. The present study reports on a method by which exit water from such farms can be monitored for gyrodactylid parasites through a simple settling procedure. We estimated that up to 230,000 dislodged, live G. colemanensis exit the hatchery daily in discharge water entering the river. It is suggested that such systems are ideal for studying the impact of such parasite export on the nature of local parasite populations.  相似文献   

17.
Vibrio species' infections are a common sequelae to environmental stress or other disease processes in shrimp, but the mechanism by which the shrimp eliminate the bacteria is poorly understood. In this study, the penetration, fate and the clearing of V. vulnificus were investigated in Penaeus monodon. A bacterial disease isolate from a shrimp farm was identified as V. vulnificus biotype I. Polyclonal antiserum was raised in rabbits against the bacterium and the specificity was verified by ELISA and immunoblot against a range of Vibrio spp. and other gram-negative bacteria. The bacteria were then administered to P. monodon juveniles by injection, immersion and oral intubation. An indirect immunoperoxidase technique was employed in a time course study to follow the bacteria and bacterial antigens in the tissue of the shrimp. Bacteria were cleared by a common route, regardless of the method of administration. Observations in immersion challenge were similar to a combination of those for oral and injection challenges. With immersion, bacteria entered the shrimp through damaged cuticle or via insertion points of cuticular setae. Shortly after entry, whole bacterial cells were observed in the haemolymph and connective tissue. They were either phagocytosed by haemocytes, or broken down outside host cells. Haemocytes containing bacterial cells or antigens (HCB) were observed in the connective tissue and haemolymph. HCB accumulated around the hepatopancreas, midgut, midgut-caecum, gills, heart and lymphoid organ. Free bacterial antigens also accumulated in the heart and lymphoid organ. Bacteria entering through the mouth by oral intubation or immersion were broken down so that only soluble or very fine particles entered the hepatopancreas. Bacterial antigens passed through the hepatopancreas into the haemolymph. Antigens were initially observed in the haemolymph sinuses and subsequently accumulated in the heart and lymphoid organ. Bacterial antigens were released from the shrimp, initially through the gills and subsequently through hepatopancreatic B-cells, branchial podocytes and sub-cuticular podocytes.  相似文献   

18.
We have used the expression library immunization technology to study the protection of Coho salmon Oncorhynchus kisutch to the infection with Piscirickettsia salmonis. Purified DNA from this bacterium was sonicated and the fragments were cloned in the expression vector pCMV-Bios. Two libraries were obtained containing 22,000 and 28,000 colonies and corresponding to approximately 8 and 10 times the genome of the pathogen, respectively. On average, the size of the inserts ranged between 300 and 1,000 bp. The plasmid DNA isolated from one of these libraries was purified and 20 micrograms were injected intramuscularly into 60 fish followed by a second dose of 10 micrograms applied 40 days later. As control, fish were injected with the same amount of DNA of the vector pCMV-Bios without insert. The titer of IgM anti-P. salmonis of vaccinated fish, evaluated 60 days post-injection, was significantly higher than that of the control group injected with the vector alone. Moreover, this response was specific against P. salmonis antigens, since no cross reaction was detected with Renibacterium salmoninarum and Yersinia ruckeri. The vaccinated and control fish were challenged 60 days after the second dose of DNA with 2.5 x 10(7) P. salmonis corresponding to 7.5 times the LD50. At 30 days post-challenge, 100% mortality was obtained with the control fish while 20% of the vaccinated animals survived. All surviving fish exhibited a lower bacterial load in the kidney than control fish. The expression library was also tested in Balb/c mice and it was found that the humoral immune response was specific to P. salmonis and it was dependent on the amount of DNA injected.  相似文献   

19.
The genes encoding the heat shock proteins HSP10 and HSP16 of the salmon pathogen Piscirickettsia salmonis have been isolated and sequenced. The HSP10 coding sequence is located in an open reading frame of 291 base pairs encoding 96 aminoacids. The HSP16 coding region was isolated as a 471 base pair fragment encoding a protein of 156 aminoacids. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from other prokaryotic organisms. Both proteins were expressed in E. coli as fusion proteins with thioredoxin and purified by chromatography on Nicolumn. A rabbit serum against P. salmonis total proteins reacts with the recombinant HSP10 and HSP16 proteins. Similar reactivity was determined by ELISA using serum from salmon infected with P. salmonis. The possibility of formulating a vaccine containing these two proteins is discussed.  相似文献   

20.
An intracellular bacterium originally isolated from hatchery-reared juvenile white seabass Atractoscion nobilis in southern California, USA, was identified by sequences of the small and large subunit ribosomal (16S and 23S) DNA and the internal transcribed spacer (ITS) as Piscirickettsia salmonis. Considering all rDNA sequences compared, the white seabass isolate (WSB-98) had a 96.3 to 98.7% homology with 4 previously described strains of P. salmonis isolated from salmon in Chile, Norway, and British Columbia, Canada. Experimental infections induced by intraperitoneal injections of juvenile white seabass with WSB-98 resulted in disease and mortality similar to that observed in P. salmonis infections in salmon. After 60 d, the cumulative mortality among P. salmonis-injected white seabass was 82 and 40%, respectively, following a high (1.99 x 10(4) TCID50) or low (3.98 x 10(2) TCID50) dose-challenge with WSB-98. The bacterium was recovered by isolation in cell culture or was observed in stains from tissues of injected white seabass but not from control fish. There were no external signs of infection. Internally, the most common gross lesion was a mottled appearance of the liver, sometimes with distinct nodules. Microscopic lesions were evident in both the capsule and parenchyma of the liver and were characterized by multifocal necrosis, often with infiltration of mononuclear leukocytes. Macrophages filled with bacteria were present at tissue sites exhibiting focal necrosis. Foreign body-type granulomas were prevalent in livers of experimentally infected white seabass, but not in control fish. Similar granulomatous lesions were observed in the spleen, kidney, intestine and gills, but these organs were considered secondary sites of infection, with significantly fewer and less severe histologic lesions compared to the liver. The results from this study clearly indicate that infections with P. salmonis are not restricted to salmonid fishes and that the bacterium can cause a disease similar to piscirickettsiosis in nonsalmonid hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号