首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

2.
The effects of 80% oxygen–20% carbon dioxide (O2–CO2) and 80% nitrogen–20% carbon dioxide (N2–CO2) atmospheres were compared with respect to the microbial and sensory characteristics of vacuum skin-packaged grain-fed beef steaks stored at −1 and 4 °C. In both N2–CO2 and O2–CO2 atmospheres, lactobacilli were predominant over Brochothrix , pseudomonads, enterobacteria and yeasts and moulds. The results of the current investigation showed that the O2–CO2 atmospheres did not yield total viable counts in excess of 105 cfu cm−2 on beef steaks after 4 weeks of storage. However, the sensory analysis and thiobarbituric acid (TBA) values (as a measure of oxidative rancidity) of the products were unacceptable at this time. In contrast, the N2–CO2 atmospheres yielded maximum total viable counts of approximately 107 cfu cm−2 and the sensory analysis and TBA values of the product were judged to be acceptable after 4 weeks of storage at −1 °C. These results indicate that sensory effects of the product were influenced to a greater extent by the chemical effects of high concentration of O2 on rancidity than by the high levels of lactobacilli.  相似文献   

3.
The annual minimum energy consumption of the bird community was 2524 × 103 kcal km−2, of which 44% was consumed by wintering species and 73% by passerines. The daily energy consumption was in summer 14–16 × 103 and in winter 1–2 × 103 kcal km−2. In spruce forests and in afforested swamps birds required approximately 0.12% of the net primary production. Their total annual energy consumption was covered by invertebrates (59%), vertebrates (2%) and vegetable matter (39%); the food derived from the ground (55%), from trees (44%) and from the air (1%). Arboreal insectivorous passerines, ground passerines and gallinaceous birds were the most important ecological guilds. Among passerines existence metabolism accounted for 73% of the annual energy consumption, extra activity for 17%, breeding activity for 1%, moult for 4% and nestlings for 4%.  相似文献   

4.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

5.
Abstract A method is proposed that allows the enrichment and most probable number estimation of H2/CO2-utilizing acetogenic bacteria. It is based on the difference in acetate production for serial dilutions incubated under either a test H2/CO2 (4:1), or a control N2/CO2 (4:1) headspace atmosphere. A nutritionally non-selective medium was used, containing bromoethane-sulfonic acid as inhibitor of methanogenic archaea and 10% pre-incubated clarified rumen fluid. Acetogenic bacteria were enumerated in rumen and hindgut contents of animals and in human feces. They ranged from below 102 to above 108 per gram wet weight gut content and their population levels were the highest in the absence of methanogenesis. The method described therein should prove useful to better understand the diversity and ecological importance of dominant gut acetogens.  相似文献   

6.
In the CAM plants, Kalanchoë tubiflora (Harvey) Hasset, Sedum morganianum E. Walth and Sedum rubrotinctum R. T. Clausen, the effects of CO2 concentrations on the light-dependent 14C transfer from the nocturnally synthetized [14C]-malic acid to starch have been studied. CO2 concentrations up to 5 × 103 μ1 1–1 did not inhibit this carbon transfer. Higher CO2 concentrations, however, were increasingly inhibitory. At 104 μl 1–1 CO2, the carbon transfer was practically prevented.
The malic acid consumption in the light showed the same response to CO2 concentrations as the [l4C]-transfer. Photosynthesis itself was not inhibited by the CO2 concentrations applied. It is assumed that, during phase III of CAM, light controls the internal CO2 concentration via photosynthesis; and that the internal CO2 concentration then controls the rate of malate decarboxylation.  相似文献   

7.
One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (Þbl 15 Tg C y–1), but greater potential through extensification of agriculture (≈ 40 Tg C y–1) or through the afforestation of surplus arable land (≈ 50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.  相似文献   

8.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

9.
Abstract The relationship between the cytotoxic effect and binding to different cell lines of Clostridium perfringens enterotoxin was investigated. The enterotoxin released 51Cr from Vero and MDCK cells labeled with Na2-51CrO4. The effect varied depending upon the dose of enterotoxin and the duration and temperature of the interaction. The enterotoxin gave no effect on FL, KB, or L-929 cells. [125I]Enterotoxin bound specifically to Vero and MDCK cells via a binding site of distinct nature, but not to FL, KB, or L-929 cells. The number of the binding sites located on one MDCK cell (1.98 × 106 sites/cell) was three times that on one Vero cell (5.64 × 105 sites/cell), although the binding affinity of MDCK cell ( K a/ 3.76 × 107 M−1) was 0.1 that of Vero cells ( K a/ 3.23 × 108 M−1). Binding of the enterotoxin to susceptible cells was temperature-independent.  相似文献   

10.
Changes in carbon metabolism and δ13C value of transgenic potato plants with a maize pyruvate,orthophosphate dikinase (PPDK; EC 2.7.9.1) gene are reported. PPDK catalyzes the formation of phospho enol pyruvate (PEP), the initial acceptor of CO2 in the C4 photosynthetic pathway. PPDK activities in the leases of transgenic potatoes were up to 5.4‐fold higher than those of control potato plants (wild‐type and treated control plants). In the transgenic potato plants, PPDK activity in leaves was negatively correlated with pyruvate content (r2= 0.81), and was positively correlated with malate content (r2= 0.88). A significant increase in the δ13C value was observed in the transgenic potato plants, suggesting a certain contribution of PEP carboxylase as the initial acceptor of atmospheric CO2. These data suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4‐type carbon metabolism. However, since parameters associated with CO2 gas exchange were not affected, the altered carbon metabolism had only a small effect on the total photosynthetic characteristics of the transgenic plants.  相似文献   

11.
This study was designed to investigate whether the blood of Pagothenia borchgrevinki , exhibits a Haldane effect, and whether activation of a Na+/H+ antiporter increases transport of intracellular protons and Bohr protons out of the erythrocytes resulting in inhibition of CO2 excretion in both P. borchgrevinki , and Dissostichus mawsoni. When carbon dioxide dissociation curves were determined from blood samples pooled from three fish under oxygenated and deoxygenated conditions a Haldane effect was observed. Using an in vitro , CO2 excretion assay, the rate of HCO3 dehydration was determined on blood and plasma equilibrated under an N2atmosphere then rapidly oxygenated with air in the presence of 10−5 M noradrenaline or acetazolamide (1004M). Whole blood and plasma from P. borchgrevinki , and D. mawsoni , were equilibrated with 0·5% CO2 in air and assayed in the presence of 10−5 M noradrenaline. Erythrocyte CO2 excretion rates were depressed significantly by noradrenaline in both species. The whole blood HCO3 dehydration rate was depressed significantly following rapid oxygenation in the presence of acetazolamide indicating that the pathway of CO2 excretion included activation of intracellular carbonic anhydrase and an adrenergic receptor.  相似文献   

12.
Global patterns of root turnover for terrestrial ecosystems   总被引:42,自引:1,他引:42  
Root turnover is a critical component of ecosystem nutrient dynamics and carbon sequestration and is also an important sink for plant primary productivity. We tested global controls on root turnover across climatic gradients and for plant functional groups by using a database of 190 published studies. Root turnover rates increased exponentially with mean annual temperature for fine roots of grasslands ( r 2 = 0.48) and forests ( r 2 = 0.17) and for total root biomass in shrublands ( r 2 = 0.55). On the basis of the best-fit exponential model, the Q 10 for root turnover was 1.4 for forest small diameter roots (5 mm or less), 1.6 for grassland fine roots, and 1.9 for shrublands. Surprisingly, after accounting for temperature, there was no such global relationship between precipitation and root turnover. The slowest average turnover rates were observed for entire tree root systems (10% annually), followed by 34% for shrubland total roots, 53% for grassland fine roots, 55% for wetland fine roots, and 56% for forest fine roots. Root turnover decreased from tropical to high-latitude systems for all plant functional groups. To test whether global relationships can be used to predict interannual variability in root turnover, we evaluated 14 yr of published root turnover data from a shortgrass steppe site in northeastern Colorado, USA. At this site there was no correlation between interannual variability in mean annual temperature and root turnover. Rather, turnover was positively correlated with the ratio of growing season precipitation and maximum monthly temperature ( r 2 = 0.61). We conclude that there are global patterns in rates of root turnover between plant groups and across climatic gradients but that these patterns cannot always be used for the successful prediction of the relationship of root turnover to climate change at a particular site.  相似文献   

13.
Di- n -butyl phthalate (DBF) is widely used as a plasticizer and has been found in all types of ecosystems. It inhibits growth and photosynthesis of green algae ( Chlorella emersonii CCAP strain 211/8 h and Selenastrum capricornutum CCAP strain 278/4) at concentrations higher than 10-5 M . The IC50 value for CO2-dependent oxygen evolution in algae was 3 × 10-4M. The CO2-reduction in isolated protoplasts prepared from barley ( Hordeum vulgare L. cv. Simba) was also inhibited by phthalate. The IC50 value was 2 × 10-4 M . The electron transport in isolated thylakoids prepared from spinach was inhibited with an IC50 value of 3 × 10-4 M . The IC50 value for uncoupled electron transport extrapolated to zero chlorophyll concentration was 2.5 × 10-5 M . The effect of di-n-butyl phthalate was localized to reactions in photosystem II. Di-n-butyl phthalate could thus be a pollutant which affects growth and photosynthesis of plants. The reported IC50 values may be underestimated since di- n -butyl phthalate can attach to surfaces. The results are discussed in relation to observed effects of di- n -butyl phthalate on other organisms.  相似文献   

14.
Abstract Dimethyl sulphide (DMS) was degraded by acclimatized activated sludge and by a mixed culture of Thiobacillus thioparus TK-1 and Pseudomonas sp. AK-2. While both these organisms persisted in stable co-culture on DMS, it was found that T. thioparus TK-1 and the derived strain TK-m grew in pure culture on DMS, and oxidized DMS with an apparent K m of 4.5 × 10−5 M. During growth, all the DMS-sulphur was oxidized stoichiometrically to sulphate but no methanol was detected in pure cultures of TK-m. DMS-carbon was probably converted to CO2, since the fixation of 14CO2 was progressively diluted during growth of a culture on 14CO2 and DMS. Growth yields were consistent with autotrophic growth, dependent on the oxidation of the methyl residues to CO2 (probably with formaldehyde as a first intermediate) and the sulphide to sulphate. The organism thus appears to exhibit a mixture, from the one substrate, of chemolithotrophic and methylotrophic energy generation supporting autotrophic growth with CO2 fixation.  相似文献   

15.
In vitro and in planta sensitivity of an indirect enzyme-linked immunoassaytechnique, using a monoclonal antibody specific for the lipopolysaccharide (LPS) of Xanthomonas campestris pv. vesicatoria , was increased 10-foldby using a newextraction buffer (gl of : KH2PO4, 2; NaHPO4, 11·5; EDTAdisodium, 0·14; thimerosal, 0·02; and lysozyme, 0·2). The procedure improvedsensitivity without increasing background levels. In vitro , the limit of detection wasbetween 1×107 and 1×108 cells ml−1 with the conventionalextraction buffer phosphate-buffered saline (PBS) and less than 1×106 cells ml−1 when lysozyme extraction buffer was substituted for PBS. In comparing 22 X. c.vesicatoria strains, absorbance readings were increased close to three-fold with the lysozymeextraction buffer as opposed to PBS. When leaf tissue extract was spiked with the bacterium, thelimit of detection was 1×107 cfu ml−1 and 1×108 cfu ml−1 with the lysozyme solution and PBS, respectively, as the extraction buffers. Whenusing the lysozyme extraction buffer in combination with a commercial amplification system, thelimit of detection was decreased to less than 1×105 cfu ml−1 in leaftissue. The addition of the lysozyme and EDTA to the phosphate buffer resulted in release of asignificant quantity of LPS and concomitant dramatic increase in sensitivity. The new procedure,termed lysozyme ELISA (L-ELISA), should increase sensitivity of ELISA reactions where LPS isthe reacting epitope.  相似文献   

16.
Changes in the microbial flora of pork stored at 4 or 14°C were studied in 5 atm CO2, 1 atm CO2 or 1 atm air. The time needed for the total aerobic count at 4°C to reach 5 × 106 organisms/cm2 was about three times longer in 5 atm CO2 than in 1 atm CO2, and about 15 times longer in 5 atm CO2 than in air. At 14°C there was no difference in growth rate between 5 atm CO2 and 1 atm CO2. No off-odour was detected after storage in 5 atm CO2 for 14 d, but the pork in 1 atm CO2 (6 d) was organoleptically unacceptable.
The predominant organisms on the pork from the processing line were: Flavobacterium spp., Acinetobacter calcoaceticus, Pseudomonas spp., Micrococcus spp. and Moraxella spp. After aerobic storage at 4°C (8 d) or 14°C (3 d) more than 90% of the flora consisted of Pseudomonas spp. At 4°C all Pseudomonas spp. were of the non-fluorescent type, whilst at 14°C 32% were Ps. putida and Ps. fluorescens. After storage in 1 atm CO2 Lactobacillus spp. represented 66% of the flora at 14°C (6 d) and 100% at 4°C (40 d), with L. xylosus dominating. After storage in 5 atm CO2 Lactobacillus spp. constituted the total flora at both temperatures with L. lactis (14°C) and L. xylosus (4°C) dominating.
It was concluded that high partial pressures of CO2 have a considerable shelf-life prolonging effect by (i) selecting the microflora towards Lactobacillus spp. and (ii) reducing the growth rate of these Lactobacillus spp. The controlling and growth inhibitory effect of CO2 was promoted by reduced temperatures.  相似文献   

17.
The development of the microflora of smoked pork loin and frankfurter sausage was followed during storage in vacuum, N2 and CO2 atmospheres at 4°C. The total aerobic count on the smoked pork loin reached 107 organisms/g after 37 d in vacuum, 43 d in N2 and 49 d in CO2. The corresponding value for the sausage was 77 d in vacuum, while the growth stopped at 6 times 104 organisms/g after 98 d in N2, and at 4 times 102 organisms/g after 48 d in CO2.
The predominant organisms on the fresh products were Bacillus spp., coryneform bacteria, Flavobacterium spp. and Pseudomonas spp.
At the end of the storage time the microflora on both products in the three gas atmospheres, consisted mainly of Lactobacillus spp. and two large groups of organisms that could not be identified as any described genus. Some of the unidentified strains could be classified as a Lactobacillus sp. after subsequent subculturing on laboratory media.
The numbers of Lactobacillus spp. at the end of storage decreased in the order, CO2 > N2 > vacuum. Lactobacillus viridescens generally constituted a substantial part of the Lactobacillus flora (5–72%). On the sausages two large uniform groups of unidentifiable homofermentative Lactobacillus spp. were also found.  相似文献   

18.
Quantitative estimates of soil C input under ambient (35 Pa) and elevated (60 Pa) CO2-partial pressure (pCO2) were determined in a Free-Air Carbon dioxide Enrichment (FACE) experiment. To facilitate 13C-tracing, Trifolium repens L. was grown in a soil with an initial δ13C distinct by at least 5‰ from the δ13C of T. repens grown under ambient or elevated pCO2. A shift in δ13C of the soil organic C was detected after one growing season. Calculated new soil C inputs in soil under ambient and elevated pCO2 were 2 and 3 t ha–1, respectively. Our findings suggest that under elevated CO2 conditions, soil C sequestration may be altered by changes in plant biomass production and quality.  相似文献   

19.
Plantago lanceolata L. seedlings were grown in sand microcosm units over a 43‐day experimental period under two CO2 regimes (800 or 400 µmol mol−1) to investigate the effect of elevated atmospheric CO2 concentration on carbon partitioning and exudate release. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period. After 42 days growth the seedlings were labelled with [14C]‐CO2 and the fate of the label within the plant and its release by the roots monitored. Elevated CO2 significantly (P ≤ 0.001) enhanced shoot, root and total dry matter production although the R:S ratio was unaltered, suggesting no alteration in gross carbon partitioning. The cumulative release of TOC (in mg C) over 0‐42 days was unaltered by CO2 treatment however, when expressed as a percentage of net assimilated C, ambient‐grown plants released a significantly (P≤ 0.001) higher percentage from their roots compared to elevated CO2‐grown plants (i.e. 8 vs 3%). The distribution of 14C‐label was markedly altered by CO2 treatment with significantly (P≤ 0.001) greater per cent label partitioned to the roots under elevated CO2. This indicates increased partitioning of recent assimilate below‐ground under elevated CO2 treatment although there was no significant difference in the percentage of 14C‐label released by the roots. Comparison of plant C budgets based on 14C‐pulse‐chase methodology and TOC measurements is discussed.  相似文献   

20.
SUMMARY 1. Viral and bacterial abundances were studied in relation to environmental attributes over an annual period, for both planktonic and attached (sediment, aquatic macrophyte and submerged wood) habitats, in a riverine wetland.
2. Annual mean abundance of planktonic viruses ranged from 2.3 × 105−3.8 × 105 particles mL−1 and varied according to sampling site. Significant seasonal patterns in viral abundance were evident and appeared to be linked to variations in bacterial abundance, dissolved organic carbon and inorganic nutrients.
3. Annual mean abundance of viruses associated with surfaces ranged from 1.3 × 106 particles cm−2 on aquatic macrophytes to 1.1 × 107 particles cm−2 on wood and also showed seasonal patterns. The difference in viral dynamics among the different sites emphasizes the importance of considering habitat diversity within wetlands when examining microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号