首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactoside primers (dodecyl lactoside derivatives) resemble intermediates in the biosynthetic pathway of glycolipids and, therefore, act as substrates for cellular enzyme-catalyzed glycosylation. To establish the optimal condition for the bioproduction of a large amount of valuable materials containing GM3-type oligosaccharides, two kinds of lactoside primers having the azido group in different positions were synthesized and introduced into B16 melanoma cells. The saccharide chains of both primers were elongated by cells to give GM3-type oligosaccharide derivatives, which were released to the culture medium. The amount of glycosylated product from newly synthesized 2-azidododecyl beta-lactoside (primer II) was almost twice that from 12-azidododecyl beta-lactoside (primer I). The effects of seeded cell number, primer concentration, and length of incubation time on the glycosylation efficiency were also investigated. The results showed that the higher the seeded cell number, the larger the amount of sialylated products obtained. The optimum concentrations of primers I and II were found to be 200 and 100 microM, respectively. Above these concentrations, productivity and cell viability decreased. As regards the length of incubation time, the sialylated products increased linearly until 48 h, but productivity did not advance thereafter. These results represent the optimal conditions that are necessary for the mass production of GM3-type oligosaccharide using azidododecyl lactoside primers and B16 cells.  相似文献   

2.
A lactoside primer, 12-azidododecyl beta-lactoside, was synthesized via the Koenigs-Knorr method by glycosylation of 1,12-dodecyldiol with perbenzoylated lactosyl bromide. The presence of the 2-O-acyl substituent in the donor gave the beta-lactoside, and an excess of acceptor ensured monoglycosylation of the diol. Mesylation of the omega-hydroxyl group in the aglycon, followed by displacement of the mesylate with azide and subsequent O-debenzoylation gave the desired omega-azidododecyl beta-lactoside. The azido glycoside primer was examined in mouse B16 melanoma cells for its feasibility as a building block for oligosaccharide biosynthesis. Uptake of the azido glycoside primer by B16 cells resulted in the sialylation of the galactose residue of the primer to give a glycosylated product having the same glycan as in ganglioside GM3. After 24 h incubation of B16 cells with the primers, the amount of sialylated omega-azidododecyl beta-lactoside primer was 75% of the amount of sialylated n-dodecyl beta-lactoside. However, after 48 h incubation, both primers gave equal amounts of the sialylated products. Interestingly, the remaining azido glycoside primer after 48 h incubation was 5.6-fold greater than that of the alkyl primer, indicating degradation of the alkyl primer to a larger extent than the omega-azido glycoside primer. The facile chemical synthesis and the efficient uptake in cells make the azido glycoside primer a versatile building block for the biocombinatorial synthesis of glycolipid oligosaccharides.  相似文献   

3.
Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions.  相似文献   

4.
In this report we present an initial determination of the biochemical defect present in a Chinese hamster ovary cell line selected for resistance to concanavalin A. Membranes of this mutant, B211, incorporated at least 10-fold less mannose from GDP-[14C]mannose into oligosaccharide-lipid than membranes of the wild type. In the presence of dolichol phosphate, membranes of the mutant and wild type exhibited similar rates of synthesis of number of early intermediates, namely, mannosylphosphoryldolichol, N-acetylglucosaminyl- and N,N'-diacetylchitobiosylpyrophosphoryldolichol, glucosylphosphoryldolichol, and mannosyloligosaccharide-lipid. The membranes of B211 did not incorporate glucose from UDP-[3H]glucose into oligosaccharide-lipid or protein. Comparison by gel filtration chromatography of oligosaccharides derived from the oligosaccharide-lipids of B211 and wild type cells labeled with [2-3H]mannose revealed that B211 cells incorporated little if any label into an oligosaccharide corresponding to the most excluded oligosaccharide labeled by wild type cells. This concanavalin A-resistant cell line appears to lack the ability to glucosylate oligosaccharide-lipid.  相似文献   

5.
Membrane preparations from developing soybean (var. Prize) cotyledon tissue, at the time of synthesis of storage glycoproteins, catalyze the sequential assembly of lipid-linked oligosaccharides from uridine-5'-diphospho-N-acetyl-d-[6-(3)H] glucosamine and guanosine-5'diphospho-d-[U-(14)C]mannose. The maximum size of lipid-linked oligosaccharide that accumulates contains the equivalent of 10 saccharide units on the basis of Bio-Gel P-2 gel filtration studies. These lipid-linked oligosaccharides show similar characteristics to polyisoprenyl diphosphate derivatives on diethylaminoethyl-cellulose chromatography and are potential intermediates in glycoprotein biosynthesis in this tissue. These glycolipids do not appear to turn over in pulse-chase experiments and no completed storage glycoproteins were detected among the products of these incubations.Tissue slices from cotyledons at the same stage of development synthesize lipid-linked oligosaccharides from [(3)H]mannose and [(3)H]glucosamine with sizes equivalent to 1, 7, 10, and approximately 15 saccharide units. In pulse-chase experiments, the lipid-linked saccharides with the equivalent of 1 and 10 units rapidly turnover, whereas those with 7 and 15 units do not. Examination of the higher oligosaccharide peaks (10 and 15) by Bio-Gel P-4 gel filtration shows them to comprise 2 distinct subsets of oligosaccharides containing different proportions of glucosamine and mannose units. Tissue slices synthesize products which resemble the completed 7S storage glycoproteins as judged by similarity of molecular weight and precipitation with specific antisera. Analysis of the oligosaccharides obtained by hydrazinolysis of glycoproteins shows the presence of a similar size "high-mannose" type N-linked oligosaccharides as in other glycoproteins from animal and plant cells.  相似文献   

6.
A glycolipid analogue, GM4‐type ganglioside, was obtained by a combination of chemical synthesis and biosynthetic processes in animal cells with dodecyl β‐D ‐galactoside (Gal C12) as primer. The primer was conveniently prepared in two steps: glycosylation, followed by deacetylation. The primer was introduced to mouse melanoma B16 cells to serve as substrate for cellular, enzyme‐catalyzed glycosylation. Incubation of the cells in the presence of the primer resulted in sialylation of the galactose residue to afford a GM4 analogue that was released from the cells to the culture medium. The strategy of preparation of the GM4 analogue described in this study is a viable alternative to the existing methods. The saccharide‐primer method is fast, convenient, not requiring expensive enzymes and glycosyl donors, and highly stereoselective.  相似文献   

7.
Heparan sulfate (HS) and heparin are highly sulfated polysaccharides. Heparin is a commonly used anticoagulant drug that inhibits the activities of factors Xa and IIa (also known as thrombin) to prevent blood clot formation. Here, we report the synthesis of a series of size-defined oligosaccharides to probe the minimum size requirement for an oligosaccharide with anti-IIa activity. The synthesis was completed by a chemoenzymatic approach involving glycosyltransferases, HS sulfotransferases, and C(5)-epimerase. We demonstrate the ability to synthesize highly purified N-sulfo-oligosaccharides having up to 21 saccharide residues. The results from anti-Xa and anti-IIa activity measurements revealed that an oligosaccharide longer than 19 saccharide residues is necessary to display anti-IIa activity. The oligosaccharides also exhibit low binding toward platelet factor 4, raising the possibility of preparing a synthetic heparin with a reduced effect of heparin-induced thrombocytopenia. The results from this study demonstrate the ability to synthesize large HS oligosaccharides and provide a unique tool to probe the structure and function relationships of HS that require the use of large HS fragments.  相似文献   

8.
B16BL6 cells, selected specifically for invasive characteristics from B16F10 mouse melanoma cells, displayed greater ability to metastasize to lungs and produced larger colonies than the parent cells, when injected intravenously. When the two cell lines were compared for surface beta1,6-branched N-oligosaccharides by flow cytometry using Leuco-Phyto-Heam-Agglutinin, B16BL6 were found to express significantly higher levels. Inhibition of the oligosaccharide expression, by treatment of the cells with swainsonine or antisense-N-acetyl glucosaminyl-transferase-V, significantly reduced metastasis and invasion (>50%). Further, inhibition of oligosaccharides on the molecules like beta1 integrin (one of the major carriers) caused 30-45% reduction in their adherence to extra-cellular-matrix components especially collagen IV and laminin, and chemotaxis towards fibronectin and matrigel. The inhibition also decreased haptotaxis by approximately 50% to fibronectin but surprisingly was enhanced towards laminin by approximately 75%. The cells on which the expression of these oligosaccharides was inhibited failed to exhibit the characteristic spontaneous metastasis and adhesion properties of B16BL6 cells. In none of the cases, however, the secretion of matrix-metallo-proteases correlated with oligosaccharide expression. Sialylation of surface oligosaccharides was found to be accompanied by even higher motility and adherence to the substrates. These results strongly support an important role of cell surface beta1,6-linked N-oligosaccharides, especially the sialylated derivatives, in the processes that influence invasion and metastasis.  相似文献   

9.
Capillary endothelial cells can be induced to form capillary-like structures in vitro by plating on fibronectin-coated dishes (Ingber, D. E., and Folkman, J. (1989) J. Cell Biol. 109, 317-330), thereby mimicking angiogenesis. To assess the role of glycoproteins bearing asparagine-linked oligosaccharides in this process, we tested the effect of oligosaccharide processing inhibitors on the formation of capillary tubes. Deoxymannojirimycin, a compound that prevents synthesis of hybrid and complex-type oligosaccharides, inhibited the formation of capillary tubes. In contrast, swainsonine, an inhibitor that blocks synthesis of complex- but not hybrid-type oligosaccharides, did not inhibit tube formation. Lectin affinity chromatography of 2-[3H] mannose-labeled glycopeptides from endothelial cells induced to form tubes did not reveal a striking difference in the spectrum of oligosaccharides compared to uninduced cells. Since endothelial cells formed tubes normally in the presence of swainsonine, we analyzed glycopeptides from swainsonine-treated induced and uninduced cells. Cells induced to form tubes were enriched in monosialylated hybrid-type oligosaccharides sensitive to alpha-fucosidase, beta-galactosidase, and beta-N-acetylhexosaminidase, suggestive of sialyl Lewis-X determinants. We used an enzyme-linked immunoassay to measure sialyl Lewis-X epitopes on capillary endothelial cells and found that both induced and uninduced cells expressed sialyl Lewis-X epitopes. Deoxymannojirimycin and, to a lesser extent, swainsonine reduced the level of sialyl Lewis-X epitopes in cells induced to form capillary tubes, but neither compound affected the level of epitopes in cell monolayers. We conclude that synthesis of at least hybrid-type oligosaccharides is required for capillary tube formation in vitro and that an increase in monosialylated, fucosylated glycans on asparagine-linked oligosaccharides occurs during this process.  相似文献   

10.
The in vivo specificity for E-selectin binding to a panel of N-linked oligosaccharides containing a clustered array of one to four sialyl Lewisx (SLex; NeuAcalpha2-3Gal[Fucalpha1-3]beta1-4GlcNAc) determinants was studied in mice. Following intraperitoneal dosing with lipopolysaccharide, radioiodinated tyrosinamide N-linked oligosaccharides were dosed i.v. and analyzed for their pharmacokinetics and biodistribution. Specific targeting was determined from the degree of SLex oligosaccharide targeting relative to a sialyl oligosaccharide control. Oligosaccharides targeted the kidney with the greatest selectivity after a 4-h induction period following lipopolysaccharide dosing. Unique pharmacokinetic profiles were identified for SLex biantennary and triantennary oligosaccharides but not for monovalent and tetraantennary SLex oligosaccharides or sialyl oligosaccharide controls. Biodistribution studies established that both SLex biantennary and triantennary oligosaccharides distributed to the kidney with 2-3-fold selectivity over sialyl oligosaccharide controls, whereas monovalent and tetraantennary SLex oligosaccharides failed to mediate specific kidney targeting. Simultaneous dosing of SLex biantennary or triantennary oligosaccharide with a mouse anti-E-selectin monoclonal antibody blocked kidney targeting, whereas co-administration with anti-P-selectin monoclonal antibody did not significantly block kidney targeting. The results suggest that SLex biantennary and triantennary are N-linked oligosaccharide ligands for E-selectin and implicate E-selectin as a bivalent receptor in the murine kidney endothelium.  相似文献   

11.
The mucin glycoproteins in tracheal mucus of patients with cystic fibrosis is more highly sulfated than the corresponding secretions from healthy individuals [16]. In order to further characterize these differences in sulfation and possibly also glycosylation patterns, we compared the structures of sulfated mucin oligosaccharides synthesized by continuously cultured human tracheal cells transformed by siman virus 40. The synthesis of highly sulfated oligosaccharide chains in mucins secreted by normal human epithelial and submucosal cell lines were compared with mucins formed by cystic fibrosis tracheal epithelial and submucosal cell lines.The epithelial cell lines from cystic fibrosis trachea showed a higher rate of sulfate uptake and a significantly higher rate of synthesis and sulfation of high molecular weight chains. Mucins synthesized by each cell line in the presence of 35SO4 were isolated and oligosaccharide chains were released by beta-elimination and separated by ion exchange chromatography and gel filtration. The sulfated high molecular weight chains synthesized by the cystic fibrosis cell lines were characterized by methylation analysis and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GlcNAc in a ratio of 1:2:2.2 and only one galactosaminitol residue for about every 150-200 sugar residues present. The average molecular size of oligosaccharide chains in these fractions was between 30,000-40,000 daltons.These studies show that increased sulfation of oligosaccharides in mucins synthesized by cells from cystic fibrosis trachea is accompanied by a significant increase in the extension of a basic branched structure present in many of the lower molecular weight oligosaccharides.  相似文献   

12.
Biosynthesis of sulfated saccharides that are linked to asparagine residues in the cell surface glycoprotein of Halobacterium halobium via a glucose residue involves sulfated dolichyl-monophosphoryl oligosaccharide intermediates (Lechner, J., Wieland, F., and Sumper, M. (1985) J. Biol. Chem. 260, 860-866). During isolation and characterization of these lipid oligosaccharides we detected a group of related compounds containing additional unidentified sugar residues. Here we report that: 1) the unknown sugar residues were 3-O-methylglucose, linked peripherally to the lipid-saccharide intermediates; 2) the 3-O-methylglucose residues in the oligosaccharides occur only at the lipid-linked level but are absent at the protein-linked level; 3) cell surface glycoprotein biosynthesis in Halobacteria in vivo is drastically depressed when S-adenosylmethionine-dependent methylation is inhibited, indicating that methylation is an obligatory step during glycoprotein synthesis. We propose a mechanism for the transport of lipid oligosaccharides through the cell membrane, involving an intermediate stage in which the saccharide moieties are transiently modified with 3-O-methylglucose.  相似文献   

13.
Epithelial cells of the rat small intestine were collected as a gradient of villus to crypt cells. Homogenates of these cells incubated with GDP-D-[14C]mannose in the presence of MnCl2 incorporated radioactivity into dolichyl mannosyl phosphate and a mixutre of dolichyl pyrophosphate oligosaccharides varying in the size of their oligosaccharide moiety. The labeled oligosaccharides formed in villus cell homogenates appeared shorter than those formed in crypt cell homogenates. The addition of dolichyl phosphate greatly stimulated the synthesis of dolichyl mannosyl phosphate. The initial rate of synthesis of dolichyl mannosyl phosphate from GDP-D-[14C]mannose and exogenous dolichyl phosphate was highest in an intermediate cell fraction having a low specific activity of sucrase and alkaline phosphatase and an intermediate specific activity of thymidine kinase. To compare the rates of dolichyl mannosyl phosphate synthesis in the different cell fractions, it was essential to control degradation of GDP-D-[14]mannose by the addition of AMP to the incubation, since villus cells degraded GDP-D-[14C]mannose much faster than crypt cells.  相似文献   

14.
Binding of platelet factor 4 to heparin oligosaccharides.   总被引:4,自引:1,他引:3       下载免费PDF全文
Heparin fractions of differing Mr (7800-18 800) prepared from commercial heparin by gel filtration and affinity chromatography on immobilized anti-thrombin III had specific activities when determined by anti-Factor Xa and anti-thrombin assays that ranged from 228 to 448 units/mg. The anti-Factor Xa activity of these fractions could be readily and totally neutralized by increasing concentrations of platelet factor 4 (PF4). That these fractions bound to immobilized PF4 was indicated by the complete binding under near physiological conditions of 3H-labelled unfractionated commercial heparin. An anti-thrombin III-binding oligosaccharide preparation (containing predominantly eight to ten saccharide units), prepared by degradation of heparin with HNO2 had high (800 units/mg) anti-Factor Xa, but negligible anti-thrombin, specific activity. The anti-Factor Xa activity of this material could not be readily neutralized by PF4, and the 3H-labelled oligosaccharides did not completely bind to immobilized PF4. A heterogeneous anti-thrombin III-binding preparation containing upwards of 16 saccharides had anti-thrombin specific activity of just less than one-half the anti-Factor Xa specific activity. This material was completely bound to immobilized PF4 and was eluted with similar concentrations of NaCl to those that were required to elute unfractionated heparins from these columns. Furthermore, increasing concentrations of PF4 neutralized the anti-Factor Xa activity of this material in a manner similar to that of unfractionated heparin. It is concluded that heparin oligosaccharides require saccharide units in addition to the anti-thrombin III-binding sequence in order to fully interact with PF4.  相似文献   

15.
The cell surface pool of metabolically labeled platelet-derived growth factor (PDGF) receptors in BALB/c3T3 fibroblasts was studied using an antiphosphotyrosine antibody. Exposure of intact cells to PDGF stimulates autophosphorylation of surface PDGF receptors and allowed immunoaffinity purification of only PDGF-activated receptors. Pulse-chase experiments demonstrated appearance of newly synthesized receptors in a surface activatable pool within 30-45 min of synthesis. In the absence of exogenous PDGF, the apparent half-life of this pool was 2 h. The presence of both N- and O-linked oligosaccharide chains on cell surface PDGF receptors was demonstrated. Enzymatic removal of the N-linked oligosaccharide chains reduced the receptor's apparent Mr by approximately 40 kDa and removal of O-linked oligosaccharide caused approximately a 7-kDa reduction. Activation of receptor tyrosine autophosphorylation by PDGF did not require either processing of high-mannose N-linked oligosaccharides to complex forms or the presence of sialic acid on receptor oligosaccharide chains. Tryptic cleavage of PDGF-activated surface receptors in intact cells yielded two discrete phosphotyrosine-containing fragments of 107 and 85 kDa. Cleveland digest patterns from each fragment indicate that both are derived from the intact PDGF receptor. These data indicate that PDGF receptors are synthesized and turn over rapidly in the absence of ligand. Partial characterization of the extracellular domain oligosaccharide contribution to receptor function and trypsin susceptibility is provided.  相似文献   

16.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

17.
It has been shown previously that chicken ovalbumin synthesized and secreted in a heterologous cell system is glycosylated at the correct site and that the oligosaccharides at that site, similar to the protein made in hen oviduct, are predominantly of the hybrid type (Sheares, B. T., and Robbins, P. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1993-1997). This site-specific glycosylation of Asn293, but not Asn312, suggested a prominent role for the nascent protein chain rather than the specific cell type in directing the proper attachment of oligosaccharide chains. In the present study, the effect of glycosylation at Asn293 on the glycosylation of Asn312 has been investigated. Using a 20-base oligodeoxynucleotide primer containing a 2-base mismatch, the codon for Asn293 in the chicken ovalbumin gene (AAC) was changed to that for Gln (CAA), thereby preventing glycosylation at amino acid 293. Constructions containing this mutation were transfected into mouse L (tk-) cells which were subsequently labeled with [35S]methionine. Ovalbumin secreted by these cells was recovered by immunoaffinity chromatography and analyzed for the presence of an oligosaccharide attached at Asn312. Treatment of the material with peptide:N-glycosidase F demonstrated that ovalbumin molecules containing Gln substituted for Asn293 were not glycosylated. This further supports our earlier hypothesis that the nascent protein chain is responsible for directing site-specific glycosylation of ovalbumin, and that the presence of an oligosaccharide chain at the first site has no influence on glycosylation at the second site.  相似文献   

18.
G W Wertz  M Krieger    L A Ball 《Journal of virology》1989,63(11):4767-4776
The synthesis of the extensively O-glycosylated attachment protein, G, of human respiratory syncytial virus and its expression on the cell surface were examined in a mutant Chinese hamster ovary (CHO) cell line, ldlD, which has a defect in protein O glycosylation. These cells, used in conjunction with an inhibitor of N-linked oligosaccharide synthesis, can be used to establish conditions in which no carbohydrate addition occurs or in which either N-linked or O-linked carbohydrate addition occurs exclusively. A recombinant vaccinia virus expression vector for the G protein was constructed which, as well as containing the human respiratory syncytial virus G gene, contained a portion of the cowpox virus genome that circumvents the normal host range restriction of vaccinia virus in CHO cells. The recombinant vector expressed high levels of G protein in both mutant ldlD and wild-type CHO cells. Several immature forms of the G protein were identified that contained exclusively N-linked or O-linked oligosaccharide side chains. Metabolic pulse-chase studies indicated that the pathway of maturation for the G protein proceeds from synthesis of the 32-kilodalton (kDa) polypeptide accompanied by cotranslational attachment of high-mannose N-linked sugars to form an intermediate with an apparent mass of 45 kDa. This step is followed by the Golgi-associated conversion of the N-linked sugars to the complex type and the completion of the O-linked oligosaccharides to achieve the mature 90-kDa form of G. Maturation from the 45-kDa N-linked form to the mature 90-kDa form occurred only in the presence of O-linked sugar addition, confirming that O-linked oligosaccharides constitute a significant proportion of the mass of the mature G protein. In the absence of O glycosylation, forms of G bearing galactose-deficient truncated N-linked and fully mature N-linked oligosaccharides were observed. The effects of N- and O-linked sugar addition on the transport of G to the cell surface were measured. Indirect immunofluorescence and flow cytometry showed that G protein could be expressed on the cell surface in the absence of either O glycosylation or N glycosylation. However, cell surface expression of G lacking both N- and O-linked oligosaccharides was severely depressed.  相似文献   

19.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

20.
The dolichol-linked oligosaccharide Glc3Man9GlcNAc2-PP-Dol is the in vivo donor substrate synthesized by most eukaryotes for asparagine-linked glycosylation. However, many protist organisms assemble dolichol-linked oligosaccharides that lack glucose residues. We have compared donor substrate utilization by the oligosaccharyltransferase (OST) from Trypanosoma cruzi, Entamoeba histolytica, Trichomonas vaginalis, Cryptococcus neoformans, and Saccharomyces cerevisiae using structurally homogeneous dolichol-linked oligosaccharides as well as a heterogeneous dolichol-linked oligosaccharide library. Our results demonstrate that the OST from diverse organisms utilizes the in vivo oligo saccharide donor in preference to certain larger and/or smaller oligosaccharide donors. Steady-state enzyme kinetic experiments reveal that the binding affinity of the tripeptide acceptor for the protist OST complex is influenced by the structure of the oligosaccharide donor. This rudimentary donor substrate selection mechanism has been refined in fungi and vertebrate organisms by the addition of a second, regulatory dolichol-linked oligosaccharide binding site, the presence of which correlates with acquisition of the SWP1/ribophorin II subunit of the OST complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号