首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of two major phosphoglycolipids from the thermophilic bacteria Thermus oshimai NTU-063, Thermus thermophilus NTU-077, Meiothermus ruber NTU-124, and Meiothermus taiwanensis NTU-220 were determined using spectroscopic and chemical analyses to be 2'-O-(1,2-diacyl-sn-glycero-3-phospho) -3'-O-(alpha-N-acetyl-glucosaminyl)-N-glyceroyl alkylamine [PGL1 (1)] and the novel structure 2'-O-(2-acylalkyldio-1-O-phospho)-3'-O-(alpha-N-acetylglucosaminyl)-N-glyceroyl alkylamine [PGL2 (2)]. PGL2 (2) is the first phosphoglycolipid identified with a 2-acylalkyldio-1-O-phosphate moiety. The fatty acids of the phosphoglycolipids are mainly iso-C(15:0), -C(16:0), and -C(17:0) and anteiso-C(15:0) and -C(17:0). The ratios of PGL2 (2) to PGL1 (1) are significantly altered when grown at different temperatures for three strains, T. thermophilus NTU-077, M. ruber NTU-124, and M. taiwanensis NTU-220, but not for T. oshimai NTU-063. Accordingly, the ratios of iso- to anteiso-branched fatty acids increase when grown at the higher temperature.  相似文献   

2.
We have cloned the genes encoding the chaperones of Meiothermus ruber, Hsp70 (Mru.Hsp70), Hsp40 (Mru.Hsp40) and Hsp22 (Mru.Hsp22). The genes hsp70, hsp22 and hsp40 of M. ruber are organized into an operon. The amino acid sequences of the three M. ruber chaperones show strong similarity with the heat shock proteins of Thermus thermophilus. Both Mru.Hsp40 and its homolog from T. thermophilus lack a cysteine-rich region. However, recombinant Mru.Hsp70 and Mru.Hsp40 associate in an ATP-dependent manner, and assemble into a complex in the absence of other proteins, unlike their counterparts from T. thermophilus, which require DafA for assembly. The analysis revealed that Mru.Hsp70 and Mru.Hsp40 assemble as monomers into the complex, although their homologs from T. thermophilus enter the complex as trimers. The Mru.Hsp70 and Mru.Hsp40 complex increases the spontaneous rate of refolding of denatured mitochondrial malate dehydrogenase by tenfold.  相似文献   

3.
Ambient nitrous oxide (N(2)O) emissions from Great Boiling Spring (GBS) in the US Great Basin depended on temperature, with the highest flux, 67.8 ± 2.6 μmol N(2)O-N m(-2) day(-1) , occurring in the large source pool at 82 °C. This rate of N(2)O production contrasted with negligible production from nearby soils and was similar to rates from soils and sediments impacted with agricultural fertilizers. To investigate the source of N(2)O, a variety of approaches were used to enrich and isolate heterotrophic micro-organisms, and isolates were screened for nitrate reduction ability. Nitrate-respiring isolates were identified by 16S rRNA gene sequencing as Thermus thermophilus (31 isolates) and T. oshimai (three isolates). All isolates reduced nitrate to N(2)O but not to dinitrogen and were unable to grow with N(2)O as a terminal electron acceptor. Representative T. thermophilus and T. oshimai strains contained genes with 96-98% and 93% DNA identity, respectively, to the nitrate reductase catalytic subunit gene (narG) of T. thermophilus HB8. These data implicate T. thermophilus and T. oshimai in high flux of N(2)O in GBS and raise questions about the genetic basis of the incomplete denitrification pathway in these organisms and on the fate of biogenic N(2)O in geothermal environments.  相似文献   

4.
Lu TL  Chen CS  Yang FL  Fung JM  Chen MY  Tsay SS  Li J  Zou W  Wu SH 《Carbohydrate research》2004,339(15):2593-2598
The structure of a major glycolipid isolated from the thermophilic bacteria Thermus oshimai NTU-063 was elucidated. The sugar and fatty acid compositions were determined by GC-MS and HPLC analysis on their methanolysis and methylation derivatives, respectively. After removal of both O- and N-acyl groups by alkaline treatment, the glycolipid was converted to a fully acetylated tetraglycosyl glycerol derivative, the structure of which was then determined by NMR spectroscopy (TOCSY, HSQC, HMBC). Thus, the complete structure of the major glycolipid from T. oshimai NTU-063 was established as beta-Glcp-(1-->6)-beta-Glcp-(1-->6)-beta-GlcpNAcyl-(1-->2)-alpha-Glcp-(1-->1)-glycerol diester. The N-acyl groups on the 2-amino-2-deoxy-glucopyranose residue are C15:0 and C17:0 fatty acids, whereas the fatty acids of glycerol diester are more heterogeneous including both straight and branched fatty acids from C15:0 to C18:0.  相似文献   

5.
Thermophiles constitute a class of microorganisms able to grow at extremely elevated temperatures. Some of these species are classified as Gram-negative bacteria, because of the presence of an outer membrane in the cell envelope, which is located on the top of a thick murein layer. Unlike typical Gram-negative bacteria, the outer membranes of Thermus species are not composed of lipopolysaccharides but of peculiar glycolipids (GL), whose structures seem to be strictly involved in the adaptation to high temperatures. In this work, the complete structures of the major GL components from the cell envelope of the thermophilic bacterium Thermus thermophilus Samu-SA1 are presented. Protocols conventionally adopted for Gram-negative bacteria were used, and, for the first time, GL from Thermus were analyzed in their native form. Two GL and one phosphoglycolipid (PGL) were detected and characterized. The two GL, analyzed by nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry, possessed the same tetrasaccharide structure linked to a glycerol unit or, alternatively, to a long-chain diol. Moreover, a PGL from Thermus was characterized for the first time, in which N-glyceroyl-heptadecaneamine was present. These molecules are chemically related to other GL from thermophile bacteria, in which they play a crucial role in the adaptation of cell membranes to heat.  相似文献   

6.
Meiothermus ruber (Loginova et al. 1984) Nobre et al. 1996 is the type species of the genus Meiothermus. This thermophilic genus is of special interest, as its members share relatively low degrees of 16S rRNA gene sequence similarity and constitute a separate evolutionary lineage from members of the genus Thermus, from which they can generally be distinguished by their slightly lower temperature optima. The temperature related split is in accordance with the chemotaxonomic feature of the polar lipids. M. ruber is a representative of the low-temperature group. This is the first completed genome sequence of the genus Meiothermus and only the third genome sequence to be published from a member of the family Thermaceae. The 3,097,457 bp long genome with its 3,052 protein-coding and 53 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

7.
The compositions of the major glycolipids (GL-1) of five strains of Thermus aquaticus, the type strain of T. filiformis, T. oshimai SPS-11, and Thermnus sp. strain CG-2 were examined by gas chromatography, gas chromatography-mass spectroscopy, fast atom bombardment-mass spectroscopy, and chemical methods. The results showed that, with the exception of T. aquaticus 15004, the organisms each have a major glycolipid whose structure was established as diglycosyl-(N-acyl)glycosaminyl-glycosyl diacylglycerol. Glucosamine was present in GL-1 of T. oshimai SPS-11 and Thermus sp. strain CG-2, while galactosamine was present in the GL-1 of T. aquaticus and T. filiformis. The novel major glycolipid of T. aquaticus 15004 was identified as galactofuranosyl-(N-acetyl)galactosaminyl-(N-acyl)galactosaminyl-gluc - osyl diacylglycerol. The hydroxy fatty acids found in the T. aquaticus strains and in the type strain of T. filiformis were exclusively amide linked to the galactosamine of the major glycolipid. Ester-linked hydroxy fatty acids were not detected in the diacylglycerol moiety of GL-1 of these organisms. Hydroxy fatty acids were detected neither in the major glycolipid of T. oshimai SPS-11 and Thermnus sp. strain CG-2, in which glucosamine is present, nor in the major phospholipid of any of the strains examined.  相似文献   

8.
In this study, we purified and characterized tetra- and triglycosyl glycolipids (GL-1 and GL-2, respectively) from two different colonial forms of Thermus scotoductus X-1, from T. filiformis Tok4 A2, and from T. oshimai SPS-11. Acid hydrolysis of the purified glycolipids liberated, in addition to the expected long-chain fatty acids, two components which were identified by gas chromatography-mass spectrometry as 16-methylheptadecane-1,2-diol and 15-methylheptadecane-1,2-diol. Fast atom bombardment mass spectrometry of the intact glycolipids indicated that a major proportion consisted of components with glycan head groups linked to long-chain 1,2-diols rather than to glycerol, although in all cases glycerol-linked compounds containing similar glycan head groups were also present. As in other Thermus strains, the polar head group of GL-1 from T. filiformis Tok4 A2 and from T. scotoductus X-1 colony type t2 was a glucosylgalactosyl-(N-acyl)glucosaminylglucosyl moiety. However, GL-2 from T. scotoductus X-1 colony type t1 and from T. oshimai SPS-11 was a truncated analog which lacked the nonreducing terminal glucose. Long-chain 1,2-diols have been previously reported in the polar lipids of Thermomicrobium roseum and (possibly) Chloroflexus aurantiacus, but to our knowledge, this is the first report of their detection in other bacteria and the first account of the structural determination of long-chain diol-linked glycolipids.  相似文献   

9.
Triamines such as norspermidine, spermidine, and homospermidine and tetraamines such as norspermine, spermine, thermospermine, and aminopropylhomospermidine were found to be distributed ubiquitously in the eight extremely thermophilic (growing at 70 degrees C) Thermus species tested. Three linear pentaamine (caldopentamine, homocaldopentamine, and thermopentamine), two linear hexaamines (caldohexamine and homocaldohexamine), two tertiary branched tetraamines (N4-aminopropylnorspermidine and N4-aminopropyl-spermidine), and quaternary branched pentaamines such as N4-bis(aminopropyl)norspermidine and N4-bis(aminopropyl)spermidine were detected in T. thermophilus HB8, T. filiformis Wai33 A1, T. flavus AT-62, and T. caldophilus GK24. The linear hexaamines and branched polyamines were absent in T. aquaticus YT-1, T. sp. X-1, T. sp. T2, and T. sp. T351, in which linear pentaamines were minor components. Moderately thermophilic Thermus ruber and Thermus sp. K-2 contained putrescine, spermidine, norspermidine, homospermidine, spermine, norspermine, thermospermine, and aminopropylhomospermidine. No pentaamines, hexaamines, or branched polyamines were found in these two moderately thermophilic Thermus species. On the other hand, moderately thermophilic, acidophilic Acidothermus cellulolyticus was devoid of all the polyamines.  相似文献   

10.
The proA proline biosynthesis gene of thermophilic bacterium Thermus ruber was cloned and sequenced, and several properties of the encoded enzyme, gamma-glutamylphosphate reductase (GPR) were studied. The proA open reading frame (ORF) was of 1286 bp. Nucleotide sequence analysis revealed the ATG initiation codon in position 36 and the TTA termination codon in position 1304. A deduced protein product of the gene was shown to be of 44,919 Da in molecular weight. The GC content was 66%, as is characteristic of various bacteria of the genus Thermus. An amino acid sequence encoded by the cloned gene showed the highest homology (up to 64%) with GPR of T. thermophilus. The maximum activity of GPR (8.2 x 10(-2) units/ml) was observed at 55 degrees C. A weak enzymatic activity was also detected at 70 degrees C. The enzyme can be used in biotechnological studies.  相似文献   

11.
Potent inhibitors limit the use of PCR assays in a wide spectrum of specimens. Here, we describe the engineering of polymerases with a broad resistance to complex environmental inhibitors using molecular breeding of eight different polymerase orthologues from the genus Thermus and directed evolution by CSR in the presence of inhibitors. Selecting for resistance to the inhibitory effects of Neomylodon bone powder, we isolated 2D9, a chimeric polymerase comprising sequence elements derived from DNA polymerases from Thermus aquaticus, Thermus oshimai, Thermus thermophilus and Thermus brockianus. 2D9 displayed a striking resistance to a broad spectrum of complex inhibitors of highly divergent composition including humic acid, bone dust, coprolite, peat extract, clay-rich soil, cave sediment and tar. The selected polymerase promises to have utility in PCR-based applications in a wide range of fields including palaeobiology, archaeology, conservation biology, forensic and historic medicine.  相似文献   

12.
Eight strains of thermophilic bacteria were examined for the presence of covalently closed circular deoxyribonucleic acid molecules by caesium chloride-ethidium bromide density gradient centrifugation. Four of the eight strains tested, Thermus flavus BS1, AT61, AT62 and Thermus thermophilus HB8 carried covalently closed circular DNA molecules. Thermus flavus BS1 haboured two species of plasmids with molecular weights of 6.1 X 10(6) and 17.0 X 10(6) as determined by electron microscopy. Thermus thermophilus HB8, T. flavus AT61 and T. flavus AT62 carried plasmids with molecular weights of 6.2 X 10(6), 6.6 X 10(6) and 6.6 X 10(6), respectively. Plasmids from T. flavus AT61 and AT62 were indistinguishable in their electrophoretic patterns in agarose or acrylamide gel after digestion with various restriction endonucleases. This is the first evidence for the presence of plasmids in extremely thermophilic bacteria, though their functions are unknown.  相似文献   

13.
We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus, an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for both enzymes. Impairing coaxial stacking of acceptor and T stems and omitting the T loop led to reduced cleavage efficiencies. Small model substrates were less efficiently cleaved by M1 RNA and RNase P from T. thermophilus than by the corresponding E. coli activities. Competition kinetics and gel retardation studies showed that truncated tRNA substrates are less tightly bound by RNase P and M1 RNA from both bacteria. Our data further indicate that (pre-)tRNA interacts stronger with E. coli than T. thermophilus M1 RNA. Thus, low cleavage efficiencies of truncated model substrates by T. thermophilus RNase P or M1 RNA could be explained by a critical loss of important contact points between enzyme and substrate. In addition, acceptor stem--T arm substrates, composed of two synthetic RNA fragments, have been designed to mimic internal cleavage of any target RNA molecule available for base pairing.  相似文献   

14.
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm.  相似文献   

15.
We isolated a small multicopy cryptic plasmid, pNHK101, from Thermus sp. TK10 for use as a replicon of a Thermus expression vector. The nucleotide sequence of pNHK101 revealed that this plasmid was 1564bp long, with a total G+C content of 66.8%, which was in agreement with that of Thermus genomic DNA. The sequence did not show any significant similarities to any other plasmids; also, the amino acid sequences of four putative open reading frames, found in the plasmid, did not show strong similarities to those in the databases, except the ORF1, which had very slight similarities to several replication proteins of plasmids from other bacteria. pNHK101 was able to replicate in Thermus thermophilus HB27 with copy number about 80, and was stably maintained at 60 degrees C, but became unstable at 70 degrees C. Based on pNHK101, we constructed a plasmid vector, pKMH052, containing the highly thermostable kanamycin resistance gene as a selective marker. The copy number of pKMH052 decreased to about one-fourth of that of pNHK101, but stability at 60 degrees C did not alter under non-selective conditions. pKMH052 was compatible with pTT8, and interestingly, the presence of pTT8 in the same cells improved the stability of pKMH052 at 70 degrees C. Cloning of the crtB gene of T. thermophilus HB27 encoding phytoene synthase into pKMH052, and introduction into T. thermophilus cells resulted in a 2.8-fold production of carotenoids, indicating the potential use of this plasmid for overexpression of genes from thermophiles and hyperthermophiles.  相似文献   

16.
Genetic transformation of auxotrophs of the extreme thermophile Thermus thermophilus HB27 to prototrophy was obtained at high frequencies of 10(-2) to 10(-1) when proliferating cell populations were exposed to chromosomal DNA from a nutritionally independent wild-type strain. The transformation frequency was proportional to the DNA concentration from 10 pg/ml to 100 ng/ml. T. thermophilus HB27 cells did not require chemical treatment to induce competence, although optimal transformation was obtained by the addition of a divalent cation (Ca2+ or Mg2+). Competence was maintained throughout the growth phase, with the highest transformation frequencies at pH 6 to 9 and at 70 degrees C. T. thermophilus HB27 and four other typical Thermus strains, T. thermophilus HB8, T. flavus AT62, T. caldophilus GK24, and T. aquaticus YT1, were also transformed to streptomycin resistance by DNA from their own spontaneous streptomycin-resistant mutants. A cryptic plasmid, pTT8, from T. thermophilus HB8 was introduced into T. thermophilus HB27 Pro- at a frequency of 10(-2).  相似文献   

17.
Members of the Deinococcaceae (e.g., Thermus, Meiothermus, Deinococcus) contain A/V-ATPases typically found in Archaea or Eukaryotes which were probably acquired by horizontal gene transfer. Two methods were used to quantify the extent to which archaeal or eukaryotic genes have been acquired by this lineage. Screening of a Meiothermus ruber library with probes made against Thermoplasma acidophilum DNA yielded a number of clones which hybridized more strongly than background. One of these contained the prolyl tRNA synthetase (RS) gene. Phylogenetic analysis shows the M. ruber and D. radiodurans prolyl RS to be more closely related to archaeal and eukaryal forms of this gene than to the typical bacterial type. Using a bioinformatics approach, putative open reading frames (ORFs) from the prerelease version of the D. radiodurans genome were screened for genes more closely related to archaeal or eukaryotic genes. Putative ORFs were searched against representative genomes from each of the three domains using automated BLAST. ORFs showing the highest matches against archaeal and eukaryotic genes were collected and ranked. Among the top-ranked hits were the A/V-ATPase catalytic and noncatalytic subunits and the prolyl RS genes. Using phylogenetic methods, ORFs were analyzed and trees assessed for evidence of horizontal gene transfer. Of the 45 genes examined, 20 showed topologies in which D. radiodurans homologues clearly group with eukaryotic or archaeal homologues, and 17 additional trees were found to show probable evidence of horizontal gene transfer. Compared to the total number of ORFs in the genome, those that can be identified as having been acquired from Archaea or Eukaryotes are relatively few (approximately 1%), suggesting that interdomain transfer is rare.  相似文献   

18.
The presence of an A/V-type ATPase in different Thermus species and in the deeper branching species Meiothermus ruber and Deinococcus radiodurans suggests that the presence of the archaeal-type ATPase is a primitive character of the Deinococci that was acquired through horizontal gene transfer (HGT). However, the presence of a bacterial type F-ATPases was reported in two newly identified Thermus species (Thermus scotoductus DSM 8553 and Thermus filiformis DSM 4687). Two different scenarios can explain this finding, either the recent replacement of the ancestral A/V-type ATPase in Thermus scotoductus and Thermus filiformis with a newly acquired F-type ATPase or a long-term persistence of both F and A type ATPase in the Deinococci, which would imply several independent losses of the F-type ATPase in the Deinococci. Using PCR with redundant primers, sequencing and Southern blot analyses, we tried to confirm the presence of an F-type ATPase in the genome of Thermus scotoductus and Thermus filiformis, and determine its phylogenetic affinities. Initial experiments appeared to confirm the presence of an F-type ATPase in Thermus scotoductus that was similar to the F-ATPases found in Bacillus. However, further experiments revealed that the detection of an F-ATPase was due to a culture contamination. For all the Thermus and Deinococcus species surveyed, including Thermus scotoductus, cultures that were free of contamination only contained an A/V-type ATP synthases.  相似文献   

19.
L-Cysteine is an important amino acid in terms of its industrial applications. The biosynthesis of L-cysteine in enteric bacteria is regulated through the feedback inhibition by L-cysteine of L-serine O-acetyltransferase (SAT), a key enzyme in L-cysteine biosynthesis. We recently found that L-cysteine is overproduced in Escherichia coli strains expressing a gene encoding feedback inhibition-insensitive SAT. Further improvements in L-cysteine production are expected by the use of SAT with high stability. We report here the sat1 gene encoding SAT of an extreme thermophile, Thermus thermophilus HB8. The sat1 gene was cloned and overexpressed in E. coli cells based on the genome sequence in T. thermophilus HB8. The predicted amino acid sequence consists of 295 amino acids and is homologous to other O-acetyltransferase members. In particular, the carboxyl-terminal region shares approximately 30% identities with SATs found in bacteria and plants, despite showing only about 15% identity in the overall sequence. Enzymatic analysis and an atomic absorption study of the purified recombinant proteins revealed that the enzyme is highly activated by Co(2+) or Ni(2+), and contains Zn(2+) and Fe(2+). These results indicate that the T. thermophilus SAT is a novel type of enzyme different from other members of this protein family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号