首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of NH4+ on net NO3- uptake has been attributed to an enhancement of efflux and, recently, to an inhibition of influx. To study this controversy, we devised treatments to distinguish the effects of NH4+ on these two processes. Roots of intact barley (Hordeum vulgare L.) seedlings, uninduced or induced with NO3- or NO2-, were used. Net uptake and efflux, respectively, were determined by following the depletion and accumulation in the external solutions. In roots of both uninduced and NO2- -induced seedlings, NO3- efflux was negligible; hence, the initial uptake rates were equivalent to influx. Under these conditions, NH4+ had little effect on NO3- uptake (influx) rates by either the low- or high-Km uptake systems. In contrast, in plants preloaded with NO3-, NH4+ and its analog CH3NH3+ decreased net uptake, presumably by enhancing NO3- efflux. The stimulatory effect of NH4+ on NO3- efflux was a function of external NH4+ and internal NO3- concentration. These results were corroborated by the absence of any effect of NH4+ on NO2- uptake unless the roots were preloaded with NO2-. In this case NH4+ increased efflux and decreased net uptake. Hence, the main effect of NH4+ on net NO3- and NO2- uptake appears to be due to enhancement of efflux and not to inhibition of influx.  相似文献   

2.
Significant spatial variability in NH4+, NO3- and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3-, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3- and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3-, and vice versa. The highest NO3- influx occurred 0-30 mm from the root apex in Douglas-fir and 0-10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5-20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation.  相似文献   

3.
During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H(+) influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K(+) efflux was continuous. Further experiments used excised coleoptile tips (7-10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO(3)(-), which distinguished two processes involved in pH regulation. Net H(+) influx (μmol g(-1) fresh weight h(-1)) for coleoptiles with NO(3)(-) was ~1.55 over the first 24 h, being about twice that in the absence of NO(3)(-), but then decreased to 0.5-0.9 as net NO(3)(-) uptake declined from ~1.3 to 0.5, indicating reduced uptake via H(+)-NO(3)(-) symports. NO(3)(-) reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K(+) balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO(3)(-) supply. Thus, biochemical pHstats and reduced net H(+) influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5.  相似文献   

4.
The effects of perturbation and excision on net NO-3, uptake, influx and efflux in roots of 8-day-old barley ( Hordeum vulgare L.) seedlings induced with NO-3 or NO-2 were determined. Perturbation was simulated by mechanically striking the intact roots with a glass rod. Perturbation or excision of roots and subsequent division into small segments had little effect on NO-3 influx, but briefly inhibited net uptake which recovered within a few min. While in perturbed roots net uptake rates recovered to the same level as in control roots, full recovery did not occur in excised roots. Inhibition of net uptake was due to stimulation of NO-3 efflux. The recovery time and level of inhibition of net NO-3 uptake and/or stimulation of efflux were a function of extent of perturbation, or the number of segments following excision, and root NO-3 concentration. NO-3 efflux was further stimulated when roots were perturbed after cytoplasmic NO-3 had been depleted, indicating that both the plasmalemma and tonoplast may be affected. In excised roots both NO-3 influx and efflux decreased with age due to depletion of energy sources. The results indicate that root perturbation and excision had no effect on NO-3 influx but inhibited net uptake by stimulating efflux.  相似文献   

5.
To better understand how fish are able to inhabit dilute waters of low pH, we examined ionoregulation in exceptionally acid-tolerant neon tetras (Paracheirodon innesi), which are native to the ion-poor, acidic Rio Negro, Amazon. Overall ion balance was unaffected by 2-wk exposure to pH 4.0 and 3.5. Measurements of unidirectional Na+ fluxes during exposure to pH 3.5 showed that tetras experienced only a mild, ionic disturbance of short duration (相似文献   

6.
Soybean [Glycine max (L.) Merrill] plants that had been subjected to 15 d of nitrogen deprivation were resupplied for 10 d with 1.0 mol m-3 nitrogen provided as NO3-, NH4+, or NH4(+) + NO3- in flowing hydroponic culture. Plants in a fourth hydroponic system received 1.0 mol m-3 NO3- during both stress and resupply periods. Concentrations of soluble carbohydrates and organic acids in roots increased 210 and 370%, respectively, during stress. For the first day of resupply, however, specific uptake rates of nitrogen, determined by ion chromatography as depletion from solution, were lower for stressed than for non-stressed plants by 43% for NO3- resupply, by 32% for NH4(+) + NO3- resupply, and 86% for NH4+ resupply. When specific uptake of nitrogen for stressed plants recovered to rates for non-stressed plants at 6 to 8 d after nitrogen resupply, carbohydrates and organic acids in their roots had declined to concentrations lower than those of non-stressed plants. Recovery of nitrogen uptake capacity of roots thus does not appear to be regulated simply by the content of soluble carbon compounds within roots. Solution concentrations of NH4+ and NO3- were monitored at 62.5 min intervals during the first 3 d of resupply. Intermittent 'hourly' intervals of net influx and net efflux occurred. Rates of uptake during influx intervals were greater for the NH4(+)-resupplied than for the NO3(-)-resupplied plants. For NH4(+)-resupplied plants, however, the hourly intervals of efflux were more numerous than for NO3(-)-resupplied plants. It thus is possible that, instead of repressing NH4+ influx, increased accumulation of amino acids and NH4+ in NH4(+)-resupplied plants inhibited net uptake by stimulation of efflux on NH4+ absorbed in excess of availability of carbon skeletons for assimilation. Entry of NH4+ into root cytoplasm appeared to be less restricted than translocation of amino acids from the cytoplasm into the xylem.  相似文献   

7.
Ryan PR  Kochian LV 《Plant physiology》1993,102(3):975-982
Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance.  相似文献   

8.
肖家欣  杨慧  张绍铃 《生态学报》2012,32(7):2127-2134
盆栽实验研究了不同施Zn水平(0、300 mg/kg和600 mg/kg)下,接种丛枝菌根真菌Glomus intraradices对枳苗生长、Zn、Cu、P、K、Ca、Mg分布的影响,并采用非损伤微测技术测定分析了菌根化与非菌根化枳根净Ca2+、H+、NO3-离子流动态。结果表明:(1)在不同施Zn水平下,接种菌根真菌显著提高了枳苗地上部及根部鲜重;随着施Zn水平的提高,菌根侵染率呈降低趋势,枳苗地上部与根部Zn含量呈增加趋势,且接种株根部Zn含量显著高于未接种株。(2)接种株未施Zn处理的地上部Cu、P、K、Mg和根部Cu含量、施600 mg/kg Zn处理的根部Cu及施300 mg/kg Zn处理的根部P含量均显著高于对照,而菌根真菌侵染对枳苗Ca含量并无显著性影响。(3)接种株未施Zn处理的根部距根尖端0 μm和600 μm处净Ca2+流出速率、600 μm处净H+流入速率、2400 μm处净NO3-流入速率均显著高于未接种株。  相似文献   

9.
Morgan, M. A. and Jackson, W. A. 1988. Inward and outward movementof ammonium in root systems: transient responses during recoveryfrom nitrogen deprivation in presence of ammonium.— J.exp. Bot. 39: 179-191. Net ammonium uptake by 20-d-old wheat (Triticum aestivum cv.Kleiber) and oat (Avena sativa cv. Tarok) seedlings was increased5- to 10-fold when the seedlings were deprived of nitrate duringthe 14-20 d period. The effect of nitrogen deprivation was toincrease net 15N-ammonium influx and decrease net 14N-ammoniumefflux during a 1 h assay period. The sizeable rate of net 15N-ammoniuminflux resulting from nitrogen deprivation was stimulated furtherby prior exposure of the seedlings to 14N-ammonium for 5 h.Additional exposure to 14N-ammonium caused the stimulated rateof 15N-ammonium influx to decline. During the 1 h assays in15N-ammonium, net 14N-ammonium efflux increased after 2 h exposureto 14N-ammonium, peaked at 5–10 h, and then declined.The consequence of the differential response of the influx andefflux processes in wheat was a marked decrease in net ammoniumuptake in the initial 2–5 h, followed by a recovery which,in turn, was followed by a slow decline. In oat, there was norecovery in net ammonium uptake after 2–5 h. Interference in ammonium assimilation by presence of methioninesulphoximine after 5 h did not inhibit expression of the ammonium-stimulatednet 15N-ammonium influx at 10 h but did substantially increasenet 14N-ammonium efflux. In nitrogen depleted seedlings, andin those exposed to 14N-ammonium for 2 h, subsequent net 14N-ammoniumefflux during 1 h in 15N-ammonium exceeded the quantity of 14N-ammoniuminitially in the roots. The increase in 15N-ammonium influx upon nitrogen deprivation,its further stimulation with 5-10 h exposure to ammonium andits subsequent decline, are discussed as possibly resultingfrom (a) the operation of two ammonium influx systems (b) theinterplay of tissue ammonium and a product of its assimilationrespectively acting as positive and negative effectors of asingle influx system and (c) variations in energy supply fromthe shoots. Key words: Net ammonium uptake, stimulated ammonium influx, ammonium efflux, tissue ammonium  相似文献   

10.
A plant growth-promoting rhizobacterium belonging to the genus Achromobacter was isolated from the oil-seed-rape (Brassica napus) root. Growth promotion bioassays were performed with oilseed rape seedlings in a growth chamber in test tubes containing attapulgite and mineral nutrient solution, containing NO3- as N source. The presence of this Achromobacter strain increased shoot and root dry weight by 22-33% and 6-21%, respectively. Inoculation of young seedlings with the Achromobacter bacteria induced a 100% improvement in NO3- uptake by the whole root system. Observations on the seminal root of seedlings 20 h after inoculation showed that there was an enhancement of both the number and the length of root hairs, compared to non-inoculated seedlings. Electrophysiological measurements of NO3- net flux with ion-selective microelectrodes showed that inoculation resulted in a specific increase of net nitrate flux in a root zone morphologically similar in inoculated and non-inoculated plants. The root area increased due to root hair stimulation by the Achromobacter bacteria, which might have contributed to the improvement of NO3- uptake by the whole root system, together with the enhancement of specific NO3- uptake rate. Moreover, inoculated plants showed increased potassium net influx and proton net efflux. Overall, the data presented suggest that the inoculation of oilseed-rape with the bacteria Achromobacter affects the mineral uptake.  相似文献   

11.
The possible involvement of calmodulin in insulin release was evaluated by studying the effects on intact islets of trifluoperazine and pimozide, two antipsychotic agents known to bind strongly to calmodulin in cell-free systems. Trifluoperazine (10-100mum) produced a dose- and time-dependent inhibition of the two phases of glucose-stimulated insulin release. The effect was not reversible by simple washing of the drug, but could be prevented by cytochalasin B or theophylline. Trifluoperazine also inhibited the release induced by glyceraldehyde, oxoisocaproate, tolbutamide or barium, but not that stimulated by 10mm-theophylline or 1mm-3-isobutyl-1-methylxanthine. Pimozide (0.5-10mum) also produced a dose-dependent inhibition of insulin release triggered by glucose, leucine or barium, but did not affect the release induced by methylxanthines. Glucose utilization by islet cells was not modified by trifluoperazine (25mum), which slightly increased cyclic AMP concentration in islets incubated without glucose. The drug did not prevent the increase in cyclic AMP concentration observed after 10min of glucose stimulation, but suppressed it after 60min. Basal or glucose-stimulated Ca(2+) influx (5min) was unaffected by 25mum-trifluoperazine, whereas Ca(2+)net uptake (60min) was inhibited by 20%. Glucose-stimulated Ca(2+) uptake was almost unaffected by pimozide. In a Ca(2+)-free medium, trifluoperazine decreased Ca(2+) efflux from the islets and did not prevent the further decrease by glucose; in the presence of Ca(2+), the drug again decreased Ca(2+) efflux and inhibited the stimulation normally produced by glucose. In the absence of glucose, trifluoperazine lowered the rate of Rb(+) efflux from the islets, decreased Rb(+) influx (10min), but did not affect Rb(+) net uptake (60min). It did not interfere with the ability of glucose to decrease Rb(+) efflux rate further and to increase Rb(+) net uptake. The results show thus that trifluoperazine does not alter the initial key events of the stimulus-secretion coupling. Its inhibition of insulin release suggests a role of calmodulin at late stages of the secretory process.  相似文献   

12.
In carp exposed to pH 5.2 in fresh water, the Ca2+ influx from the water is reduced by 31% when compared to fish in water of neutral pH. At pH 5.2, the Ca2+ influx but not Na+ uptake is decreased by aluminum (Al). Al reduces Ca2+ influx dose-dependently: a maximum 55% reduction was observed after 1-2 h exposure to 200 micrograms.1(-1) (7.4 microM) Al. Branchial Ca2+ efflux is less sensitive to Al and affected only by exposure for more than 1 h to high Al concentrations. Na+ influx is not affected by concentrations Al up to 400 micrograms.1(-1). Na+ efflux, similarly to Ca2+ efflux, increased when fish were exposed for more than 1 h to 400 micrograms.1(-1) Al.  相似文献   

13.
Aslam M  Travis RL  Rains DW 《Plant physiology》1996,112(3):1167-1175
Induction of an NO3- efflux system in intact barley (Hordeum vulgare L.) roots was demonstrated. Since the measurement of NO3- efflux is dependent on its accumulation, experiments were devised to facilitate accumulation under noninducing conditions. This was accomplished by incubating seedlings in 10 mM NO3- in the presence of RNA and protein synthesis inhibitors. Under these conditions NO3- uptake is mediated by constitutive high- and low-affinity transport systems. Control roots were incubated with 1.0 mM NO3-. This resulted in the accumulation of similar levels of NO3- in both treated and control roots; however, cytoplasmic NO3- efflux from inhibitor-treated roots was much lower than from control roots. Following a brief lag period, efflux rates increased rapidly in the presence of NO3- for 8 to 12 h. The NO3- efflux system was also induced by ambient NO2-. After induction the efflux system was relatively stable in the presence of RNA and protein synthesis inhibitors as long as NO3- or NO2- was present. These results suggest that NO3- efflux may be an inducible system requiring both RNA and protein synthesis, as does induction of the uptake system. The efflux system, however, has a much slower turnover rate than the uptake system.  相似文献   

14.
Compensation by dark-period uptake of NH(4)(+) and NO(3)(-) in the grasses Phleum pratense L. and Festuca pratensis Huds. following N deprivation during the preceding light period was investigated in flowing solution culture under an artificial 10/14 h light/dark cycle. N was supplied as either NO(3)(-), NH(4)(+) or NH(4)NO(3) at 20+/-5 mmol m(-3), available continuously or only during the dark period, for 5-10 d. Intermittent N supply did not affect total daily N uptake, growth rate or net partitioning of dry matter. Net uptake and influx of NO(3)(-) varied similarly throughout the diurnal cycle when NO(3)(-) was supplied continuously, with a marginal contribution by NO(3)(-) efflux. Influx was significantly higher and efflux slightly higher following interruption of NO(3)(-) supply during the light period. Nitrate accounted for 80% of N in xylem exudate except between hours 6-9 of the light period when the amino acid concentration increased 3-fold, primarily as glutamine. Diurnal variation in relative NO(3)(-) uptake exhibited five phases of constant acceleration/deceleration, described reasonably well assuming NO(3)(-) influx was subject to metabolic co-regulation by NO(3)(-) and amino acid levels in the cytoplasmic compartment of the roots. Accordingly, influx is determined by variation in root NO(3)(-) levels throughout the dark period and the first half of the light period, but is down-regulated by increased amino acid levels during the second half of the light period. The sharp light/dark transitions affect transpiration rate and hence xylem N flux which, in turn, affect NO(3)(-) levels in the cytoplasmic compartment of the roots and the rate of NO(3)(-) assimilation in the shoot.  相似文献   

15.
Interactions between NO(3)(-) and NO(2)(-) were studied at the level of root uptake, ion translocation (NO(3)(-), NO(2)(-), K(+)), ion xylem exudates composition and inorganic cation contents (K(+), Ca(2+), Mg(2+)) using tomato seedling (Solanum lycopersicum Mill cv. Ibiza F1). Nitrite was supplied in the medium as KNO(2) (0, 0.25, 2.5, 5 and 10?mM). Plants cultivated on the same doses of KNO(3) served as control. The experimental system allowed direct measurements of net NO(3)(-) and NO(2)(-) uptake. Our results showed that NO(3)(-) uptake and translocation were stimulated by external supply of K(+), while they were hardly decreased by NO(2)(-) supply. Contents of K(+) and Mg(2+) were negatively affected in all tomato tissues by increasing nitrite concentration in the medium. Highest dose of NO(2)(-) decreased Ca(2+) accumulation in shoots and conversely increased that in the roots. Histological study at the stem level revealed that nitrite (10?mM) induced a restriction of the tissue territories as well as less developed regions and some conductor tissues disorganization in this organ structure. The overall results suggest that nitrite exposure delayed growth and injured cell structure and overall nutrient uptake.  相似文献   

16.
Inside-out plasma-membrane vesicles isolated from rat liver [Prpic, Green, Blackmore & Exton (1984) J. Biol. Chem. 259, 1382-1385] accumulated a substantial amount of 45Ca2+ when they were incubated in a medium whose ionic composition and pH mimicked those of cytosol and which contained MgATP. The Vmax of the initial 45Ca2+ uptake rate was 2.9 +/- 0.6 nmol/min per mg and the Km for Ca2+ was 0.50 +/- 0.08 microM. The ATP-dependent 45Ca2+ uptake by inside-out plasma-membrane vesicles was about 20 times more sensitive to saponin than was the ATP-dependent uptake by a microsomal preparation. The 45Ca2+ efflux from the inside-out vesicles, which is equivalent to the Ca2+ influx in intact cells, was increased when the free Ca2+ concentration in the medium was decreased. The Ca2+ antagonists La3+ and Co2+ inhibited the 45Ca2+ efflux from the vesicles. Neomycin stimulated the Ca2+ efflux in the presence of either a high or a low free Ca2+ concentration. These results confirm that polyvalent cations regulate Ca2+ fluxes through the plasma membrane.  相似文献   

17.
In this study the properties of the 45Ca2+ influx in human red blood cells (RBC) induced by NaVO3 or ATP-depletion were compared. Both NaVO3-induced and ATP-depletion-induced 45Ca2+ influxes were in the range 10(-6)-10(-5) mol Ca2+ x l(-1)cells x h(-1). The saturatability of ATP-depletion-induced 45Ca2+ influx with Ca2+ was much less pronounced than that of NaVO3-induced 45Ca2+ influx. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 micromol/l) and Cu2+ (IC50 = 9 micromol/l) but these inhibitors had only a marginal effect when ATP-depletion was used as the Ca2+ influx inducer. On the other hand, polymyxin B (PXB) (1-5 mg/ml) strongly stimulated the ATP-depletion-induced 45Ca2+ influx whereas its effect on the NaVO3-induced Ca2+ influx was biphasic, with about 10% stimulation at lower PXB concentrations and an inhibition of 40% at higher concentrations. SDS-PAGE revealed that both NaVO3 and PXB induced changes in the protein phosphorylation pattern in the presence of Ca2+. NaVO3 stimulated the phosphorylation of several proteins and this effect was counteracted by PXB. The comparison of the kinetics and temperature dependencies of the Gárdos effect induced by NaVO3 and the ATP-depletion showed marked differences. The ability of NaVO3 to induce the Gárdos effect dramatically increased in ATP-depleted cells. These findings indicate that the 45Ca2+ influxes preceding the activation of the Ca2+-activated K+ efflux (Gárdos effect) stimulated by NaVO3 and by ATP-depletion, are mediated by different transport pathways. In addition, obtained results demonstrate that ATP-depletion and NaVO3-treatment exert additive action in triggering the Gárdos effect.  相似文献   

18.
The Ca2+-mobilizing actions of ADP, ATP and epidermal growth factor (EGF) and their interaction with glucagon were studied in a perfused liver system incorporating a Ca2+-selective electrode. ADP (1-100 microM), ATP (1-100 microM) and EGF (10-50 nM) all induced a net efflux, followed by a net uptake of Ca2+ in the intact liver. The co-administration of glucagon (or of cyclic AMP) with these agents resulted in a synergistic potentiation of the Ca2+ uptake response in a way which resembles the synergism observed when glucagon is administered with phenylephrine, vasopressin or angiotensin [Altin & Bygrave (1986) Biochem J. 238, 653-661]. The inability of diltiazem, verapamil and nifedipine to inhibit the Ca2+-influx response suggests that the stimulation of Ca2+ influx does not occur through voltage-sensitive Ca2+ channels. By contrast, the synergistic effects of glucagon in the stimulation of Ca2+ influx are inhibited by 10 mM-neomycin, and a lowering of the extracellular pH to 6.8. Simultaneous measurements of perfusate Ca2+ and pH changes suggest that the Ca2+ influx response is not mediated by a Ca2+/H+ exchange. The inability of neomycin and low extracellular pH to inhibit the refilling of the hormone-sensitive pool of Ca2+, after the administration of Ca2+-mobilizing agents alone, provides evidence for the existence in liver of at least two Ca2+-influx pathways, or mechanisms for regulating Ca2+ influx.  相似文献   

19.
Extracellular ATP (1 mM) inhibited the growth of Friend virus-infected murine erythroleukemia cells (MEL cells) but had no effect on dimethyl sulfoxide-induced differentiation. ATP (1 mM) also caused changes in the permeability of MEL cells to ions. There was an increased influx of 45Ca2+ from a basal level of 5 pmol/min to 18 pmol/min/10(6) cells to achieve a 2-fold increase in steady-state Ca2+ as measured at isotopic equilibration. Ca2+ influx was blocked by diisothiocyanostilbene disulfonate (DIDS), an inhibitor of anion transport. ATP also stimulated Cl- uptake, and this flux was inhibited by DIDS. The ratio of ATP stimulated Cl- to Ca2+ uptake was 1.6:1. K+ and Na+ influx were also stimulated by ATP, but phosphate uptake was inhibited; the Na+ influx dissipated the Na+ gradient and thus inhibited nutrient uptake. ATP-stimulated K+ influx was ouabain inhibitable; however, the total cellular K+ decreased due to an ATP-stimulated ouabain-resistant K+ efflux. Na+ influx and Ca2+ influx occurred by separate independent routes, since Na+ influx was not inhibited by DIDS. The effects observed were specific for ATP *K1/2 MgATP = 0.7 mM) since AMP, GTP, adenosine, and the slowly hydrolyzable ATP analogue adenyl-5'-yl imidodiphosphate were without effect. The major ionic changes in the cell were a decrease in K+ and increase in Na+; cytoplasmic pH and free Ca2+ did not change appreciably. These ATP-induced changes in ion flux are considered to be responsible for growth inhibition.  相似文献   

20.
Nitrate influx, efflux and net nitrate uptake were measured for the slow-growing Quercus suber L. (cork-oak) to estimate the N-uptake efficiency of its seedlings when grown with free access to nitrate. We hypothesise that nitrate influx, an energetically costly process, is not very efficiently controlled so as to avoid losses through efflux, because Q. suber has relatively high respiratory costs for ion uptake. Q. suber seedlings were grown in a growth room in hydroponics with 1 mM NO3 -. Seedlings were labelled with 15NO3 - in nutrient solution for 5 min to measure influx and for 2 h for net uptake. Efflux was calculated as the difference between influx and net uptake. Measurements were made in the morning, afternoon and night. The site of nitrate reduction was estimated from the ratio of NO3 - to amino acids in the xylem sap; the observed ratio indicated that nitrate reduction occurred predominantly in the roots. Nitrate influx was always much higher than net acquisition and both tended to be lower at night. High efflux occurred both during the day and at night, although the proportion of 15NO3 - taken up that was loss through efflux was proportionally higher during the night. Efflux was a significant fraction of influx. We concluded that the acquisition system is energetically inefficient under the conditions tested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号