首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the presence of ATP and of Mg(2+), human erythrocyte membranes show a phosphatase activity towards p-nitrophenyl phosphate which is activated by low concentrations of Ca(2+). The effect of Ca(2+) is strongly enhanced if either K(+) or Na(+) is also present. Activation of the p-nitrophenyl phosphate phosphatase by Ca(2+) reaches a half-maximum at about 8mum-Ca(2+) and is apparent only when the ion has access to the inner surface of the cell membrane. Ca(2+)-dependent phosphatase activity can only be observed if ATP is at the inner surface of the cell membrane, and the presence of ATP seems to be absolutely necessary, since either its removal or its replacement by other nucleoside triphosphates abolishes the activating effect of Ca(2+). The properties of the (ATP+Ca(2+))-dependent phosphatase are very similar to those of the Ca(2+)-dependent ATPase (adenosine triphosphatase), also present in erythrocyte membranes, which probably is involved in Ca(2+) transport in erythrocytes. The similarities suggest that both activities may be properties of the same molecular system. This view is further supported by the fact that p-nitrophenyl phosphate inhibits to a similar extent Ca(2+)-dependent ATPase activity and ATP-dependent Ca(2+) extrusion from erythrocytes.  相似文献   

2.
Calcium ions promote the rapid transfer of the terminal phosphate of ATP to a protein of human erythrocyte membranes. The concentration of Ca2+ for half-maximal effect is 7 muM. At nonlimiting ATP concentrations the level of 32P incorporated by the membranes is independent of the presence or absence of Mg2+. The number of phosphorylating sites in a single erythrocyte membrane is about 700. The influence of pH on the rate of hydrolysis of the bound phosphate and its rapid release on exposure to hydroxylamine are both consistent with an acylphosphate bond. The phosphate in the protein undergoes rapid turnover. Enzymatic splitting of the phosphate is stimulated by Mg2+ but not by Ca2+. It is proposed that Mg2+ accelerates the splitting of the phosphate by favoring the conversion of the phosphoprotein from a state of low reactivity to a state of high reactivity towards water. The reactions described probably are intermediate steps in the hydrolysis of ATP catalyzed by the Ca2+-dependent ATPase of human erythrocyte membranes.  相似文献   

3.
4.
5.
6.
The dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) on lipid has been examined in a number of different ways, with the use of various preparations from kidney tissue. The main findings were as follows. (1) The ATPase activities of the preparations examined were closely correlated with their total phospholipid content. (2) Extraction of the ATPase with deoxycholate or Lubrol W, combined with suitable salt-fractionation and washing procedures, removed phospholipid, cholesterol and enzymic activity in parallel; but activity was completely lost before all lipid had been removed. (3) The loss of activity could not be attributed to inhibition by residual detergent. (4) No selective removal of any particular phospholipid class by detergent could be detected. (5) Consistent reactivation of the Lubrol-extracted enzymes was obtained by adding dispersions of exogenous phospholipid, but only some, bearing a net negative charge, such as phosphatidylserine and phosphatidylglycerol, were effective. (6) The degree of reactivation was correlated with the amount of residual activity remaining after lipid depletion. (7) Partial purification of the ATPase, giving a 50-fold increase in specific activity, was not accompanied by selective enhancement of any particular class of phospholipid. We conclude that although the ATPase is dependent on phospholipid, only the reactivation results provide evidence for specificity.  相似文献   

7.
The phospholipid-dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) and associated K-+-dependent phosphatase activity (EC 3.6.1.7) have been compared. Unlike the (Na-++K-+)-dependent ATPase activities, the K-+-dependent phosphatase activities of a number of different preparations were not closely correlated with their total phospholipid contents. After partial lipid depletion with a single extraction in Lubrol W the residual ATPase and phosphatase activities were correlated, but their magnitudes were quite different: on average only about 5% of the former remained compared with 50% of the latter. A similar differential effect on these activities was found after extraction with deoxycholate. In contrast with the ATPase, consistent restoration of the phosphatase activity of Lubrol-extracted enzymes by added exogenous phospholipids was not observed. We conclude that, although the K-+-dependent phosphatase may be lipid-dependent, the lipid requirement must be different from that of the complete ATPase system, and this difference should help investigations of their relationship.  相似文献   

8.
9.
The phosphorylation and dephosphorylation steps of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) reaction have been compared in 'normal', lipid-depleted and 'restored' membrane ATPase preparations. Partial lipid depletion was achieved by a single extraction with Lubrol W, and 'restoration' by adding pure phosphatidylserine. Gamma-32-P-labelled ATP was used for phosphorylation. The main findings were as follows. (1) Partial lipid depletion decreased but did not prevent Na-+-dependent phosphorylation, although it virtually abolished both Na-+-dependent and (Na-++K-+)-dependent ATPase activities. (2) 'Restoration' with phosphatidylserine produced an increment in phosphorylation that was the same in the presence and absence of added Na-+. (3) K-+ decreased the extent of Na-+-dependent phosphorylation of the depleted enzyme without producing a corresponding release of Pi. (4) K-+ rapidly decreased the extent of phosphorylation of the 'restored' enzyme to near-background value, with a concomitant release of Pi. (5) Na-+-dependent ATP hydrolysis was not restored. (6) The turnover of the 'restored' enzyme seemed to be higher than that of the 'normal' enzyme. The reaction sequence is discussed in relation to these results and the fact that the depleted enzyme retained about 50% of K-+-dependent phosphatase activity.  相似文献   

10.
The kinetics of protein-fluorescence change when rabbit skeletal myosin subfragment 1 is mixed with ATP or adenosine 5'-(3-thiotriphosphate) in the presence of Mg(2+) are incompatible with a simple bimolecular association process. A substrate-induced conformation change with DeltaG(0)<-24kJ.mol(-1) (i.e. DeltaG(0) could be more negative) at pH8 and 21 degrees C is proposed as the additional step in the binding of ATP. The postulated binding mechanism is M+ATPright harpoon over left harpoonM.ATPright harpoon over left harpoonM*.ATP, where the association constant for the first step, K(1), is 4.5x10(3)m(-1) at I 0.14m and the rate of isomerization is 400s(-1). In the presence of Mg(2+), ADP binds in a similar fashion to ATP, the rate of the conformation change also being 400s(-1), but with DeltaG(0) for that process being -14kJ.mol(-1). The effect of increasing ionic strength is to decrease K(1), the kinetics of the conformation change being essentially unaltered. Alternative schemes involving a two-step binding process for ATP to subfragment 1 are possible. These are not excluded by the experimental results, although they are perhaps less likely because they imply uncharacteristically slow bimolecular association rate constants.  相似文献   

11.
12.
1. Preincubation of the ox heart chloroform-released mitochondrial ATPase with MgATP results in a time-dependent inhibition of ATPase activity. No re-activation occurs when MgATP remains in the preincubation medium. The enzyme activity returns when all the MgATP in the preincubation system has been hydrolysed. 2. The mechanism of the MgATP-induced inhibition was examined. Inhibition occurs on incubation with MgATP or other hydrolysable nucleotides. Incubation with MgADP or Pi does not cause any inhibition. Neither freshly bound adenine nucleotide nor Pi is associated with inhibited enzyme. The rate of MgATP-induced inhibition correlates with the rate of ATP hydrolysis in the preincubation medium. Changing the rate of ATP hydrolysis at a fixed concentration of ATP also changes the rate of MgATP-induced inhibition by the same proportion. The inhibition is thus related to the ATP-hydrolysis process itself. 3. We propose that intermediate enzyme species of the ATP-hydrolytic sequence can undergo a conformational change to form inhibited species. The kinetics of the inhibition suggest that a substrate-activation step is involved in ATP hydrolysis and MgATP-induced inhibition. 4. The effects of the nature of the preincubation medium on the process of MgATP-induced inhibition and its reversal were examined.  相似文献   

13.
14.
Microsomal fraction was prepared by ultracentrifugation of homogenates of cortical tissue from bovine brains. The preparation displayed ATPase (adenosine triphosphatase) activity in the presence of Mg(2+) (6.4mumol of P(i)/h per mg of protein) and Ca(2+) (3.4mumol of P(i)/h per mg of protein). Kinetic analysis of the activation of the enzyme preparation by Ca(2+) resulted in the demonstration of two apparent K(m) values for Ca(2+) (6.0x10(-8)m and 1.2x10(-6)m). Treatment of the microsomal membranes with Triton X-100 resulted in solubilization of the ATPase, though with some loss of activity. The solubilized microsomal proteins were incorporated into liposomes. By incubation of the liposomes in media containing (45)Ca(2+) an ATP-dependent uptake of Ca(2+) was demonstrated. The solubilized preparation was subjected to preparative isoelectric focusing in granulated gel beds. Two distinct peaks of Mg(2+)- and Ca(2+)-dependent ATPase activity were observed at pH4.8 (peak 4.8) and at pH6.3 (peak 6.3). The material isolated in peaks 4.8 and 6.3 was focused in polyacrylamide gel with pH gradients. The material corresponding to peak 4.8 consisted of a single protein, whereas peak 6.3 contained one major and at least one minor protein. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis confirmed these results and indicated that the major component of peak 4.8 and the protein of peak 6.3 both had a molecular weight of 105000. The material in peaks 4.8 and 6.3 was assayed for ATPase activity in the presence of various concentrations of Ca(2+). Kinetic analysis of the results for peak 4.8 demonstrated an apparent K(m) value for Ca(2+) of 4.1x10(-8)m. The enzyme isolated at pH6.3 had an apparent K(m) value of 3.8x10(-6)m. However, when the material from peak 4.8 was incubated in the presence of 1mm-Mg(2+) the ATPase could not be activated by Ca(2+).  相似文献   

15.
The Mg2+-dependent ATPase (adenosine 5'-triphosphatase) mechanism of myosin and subfragment 1 prepared from frog leg muscle was investigated by transient kinetic technique. The results show that in general terms the mechanism is similar to that of the rabbit skeletal-muscle myosin ATPase. During subfragment-1 ATPase activity at 0-5 degrees C pH 7.0 and I0.15, the predominant component of the steady-state intermediate is a subfragment-1-products complex (E.ADP.Pi). Binary subfragment-1-ATP (E.ATP) and subfragment-1-ADP (E.ADP) complexes are the other main components of the steady-state intermediate, the relative concentrations of the three components E.ATP, E.ADP.Pi and E.ADP being 5.5:92.5:2.0 respectively. The frog myosin ATPase mechanism is distinguished from that of the rabbit at 0-5 degrees C by the low steady-state concentrations of E.ATP and E.ADP relative to that of E.ADP.Pi and can be described by: E + ATP k' + 1 in equilibrium k' - 1 E.ATP k' + 2 in equilibrium k' - 2 E.ADP.Pi k' + 3 in equilibrium k' - 3 E.ADP + Pi k' + 4 in equilibrium k' - 4 E + ADP. In the above conditions successive forward rate constants have values: k' + 1, 1.1 X 10(5)M-1.S-1; k' + 2 greater than 5s-1; k' + 3, 0.011 s-1; k' + 4, 0.5 s-1; k'-1 is probably less than 0.006s-1. The observed second-order rate constants of the association of actin to subfragment 1 and of ATP-induced dissociation of the actin-subfragment-1 complex are 5.5 X 10(4) M-1.S-1 and 7.4 X 10(5) M-1.S-1 respectively at 2-5 degrees C and pH 7.0. The physiological implications of these results are discussed.  相似文献   

16.
17.
The apparent affinity constants for the binding of Cs+, Rb+, K+, Li+, Tl+ and NH4+ to (Na+ + K+)-dependent adenosine triphosphatase from teleost gills were measured and the values discussed in terms of the ion-selectivity isotherm described by Eisenman & Krasne (1975) [in MTP International Review of Science: Biochemistry Series One (Fox, C.F., ed.), vol. 2, pp. 27--59, Butterworths University Park Press, Baltimore]. The ion selectivity of the present enzyme is remarkably similar to that from nerve and brain.  相似文献   

18.
19.
Delipidated dogfish rectal-gland Na++K+-ATPase (Na++K+-dependent adenosine triphosphatase), almost devoid of hydrolytic activity, is able to bind about 2nmol of ADP/mg of protein. The "affinity" of delipidated enzyme for ADP is not affected by K+ in concentrations that greatly decrease the "affinity" of native Na++K+-ATPase. The K+-sensitivity of the ADP binding is in part restored by relipidation with dioleoyl phosphatidylcholine.  相似文献   

20.
Kinetic parameters are reported for Mg2+, Na+ and K+ as activators of the p-nitrophenylphosphatase activity associated with (Na+ + K+)-ATPase (ATP-phosphohydrolase, EC 3.6.1.3) of beef brain. In each case the phosphatase reaction is activated at low concentrations of the cation and inhibited by higher concentrations. The concentrations of cation that produced half-maximal activation and half-maximal inhibition are increased as the concentration of either of the other two cations is increased. These second ligand effects are all saturable functions. The apparent binding constant that characterizes the effect on activation is closely similar to that acting upon the inhibitory phase in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号