首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

2.
The Src-homology 3 (SH3) region is a protein domain consisting of approximately 60 residues. It occurs in a large number of eukaryotic proteins involved in signal transduction, cell polarization and membrane--cytoskeleton interactions. The function is unknown, but it is probably involved in specific protein--protein interactions. Here we report the crystal structure of the SH3 domain of Fyn (a Src family tyrosine kinase) at 1.9 A resolution. The crystals have two SH3 molecules per asymmetric unit. These two Fyn SH3 domains are not related by a local twofold axis. The crystal structures of spectrin and Fyn SH3 domains as well as the solution structure of the Src SH3 domain show that these all have the same basic fold. A protein domain which has the same topology as SH3 is present in the prokaryotic regulatory enzyme BirA. The comparison between the crystal structures of Fyn and spectrin SH3 domains shows that a conserved surface patch, consisting mainly of aromatic residues, is flanked by two hairpin-like loops (residues 94-104 and 114-118 in Fyn). These loops are different in tyrosine kinase and spectrin SH3 domains. They could modulate the binding properties of the aromatic surface.  相似文献   

3.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

4.
The docking protein p130Cas (Cas) becomes tyrosine-phosphorylated in its central substrate domain in response to extracellular stimuli such as integrin-mediated cell adhesion, and transmits signals through interactions with various intracellular signaling molecules such as the adaptor protein Crk. Src-family kinases (SFKs) bind a specific site in the carboxyl-terminal region of Cas and subsequently SFKs phosphorylate progressively the substrate domain in Cas. In this study crystallography, mutagenesis and binding assays were used to understand the molecular basis for Cas interactions with SFKs. Tyrosine phosphorylation regulates binding of Cas to SFKs, and the primary site for this phosphorylation, Y762, has been proposed. A phosphorylated peptide corresponding to Cas residues 759MEDpYDYVHL767 containing the key phosphotyrosine was crystallized in complex with the SH3-SH2 domain of the SFK Lck. The results provide the first structural data for this protein-protein interaction. The motif in Cas 762pYDYV binds to the SH2 domain in a mode that mimics high-affinity ligands, involving dual contacts of Y762 and V765 with conserved residues in SFK SH2 domains. In addition, Y764 is in position to make an electrostatic contact after phosphorylation with a conserved SFK arginine that mediates interactions with other high-affinity SH2 binders. These new molecular data suggest that Cas may regulate activity of Src as a competing ligand to displace intramolecular interactions that occur in SFKs (between the C-terminal tail and the SH2 domain) and restrain and down-regulate the kinase in an inactive form.  相似文献   

5.
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.  相似文献   

6.
The activity of the c-Src tyrosine kinase is regulated through intramolecular interactions between the catalytic and SH2/SH3 domains. However, the exact mechanism by which this occurs remains obscure. In the crystal structure of c-Src, the peptide that links the SH2 and catalytic domain (SH2-CD linker) is sandwiched between the latter and the SH3 domain. A residue in the linker, Leu 255, inserts its side chain into a deep hydrophobic pocket present on the surface of the catalytic domain. To investigate the possible regulatory role of this prominent interaction, we mutated Leu 255 to different hydrophobic residues. We found that the length and 'bulkiness' of the side chain had a profound influence on c-Src regulation. Src-L255V was highly active but showed reduced SH3 accessibility in vitro as well as an altered localization in vivo when compared to other deregulated forms of Src. Our analyses lead us to suggest that the Leu 255-pocket interaction is a critical component of the intramolecular inhibition mechanism of Src family kinases.  相似文献   

7.
The regulation of the activity of Abl and Src family tyrosine kinases is mediated by intramolecular interactions between the SH3, SH2, and kinase (SH1) domains. We have determined the crystal structure of an unphosphorylated form of c-Src in which the SH2 domain is not bound to the C-terminal tail. This results in an open structure where the kinase domain adopts an active conformation and the C terminus binds within a hydrophobic pocket in the C-terminal lobe. NMR binding studies support the hypothesis that an N-terminal myristate could bind in this pocket, as observed for Abl, suggesting that c-Src may also be regulated by myristate binding. In addition, the structure contains a des-methyl analog of the antileukemia drug imatinib (STI571; Gleevec). This structure reveals why the drug shows a low affinity for active kinase conformations, contributing to its excellent kinase selectivity profile.  相似文献   

8.
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases.  相似文献   

9.
Intracellular protein interaction domains are essential for eukaryotic signaling. In T cells, the CD2BP2 adaptor binds two membrane-proximal proline-rich motifs in the CD2 cytoplasmic tail via its GYF domain, thereby regulating interleukin-2 production. Here we present the structure of the GYF domain in complex with a CD2 tail peptide. Unlike SH3 domains, which use two surface pockets to accommodate proline residues of ligands, the GYF domain employs phylogenetically conserved hydrophobic residues to create a single interaction surface. NMR analysis shows that the Fyn but not the Lck tyrosine kinase SH3 domain competes with CD2BP2 GYF-domain binding to the same CD2 proline-rich sequence in vitro. To test the in vivo significance of this competition, we used co-immunoprecipitation experiments and found that CD2BP2 is the ligand of the membrane-proximal proline-rich tandem repeat of CD2 in detergent-soluble membrane compartments, but is replaced by Fyn SH3 after CD2 is translocated into lipid rafts upon CD2 ectodomain clustering. This unveils the mechanism of a switch of CD2 function due to an extracellular mitogenic signal.  相似文献   

10.
The crystal structures of the regulated Src and Hck tyrosine kinases show intramolecular interactions between the phosphorylated tail and the SH2 domain as well as between the SH3 domain, the SH2-catalytic domain linker (SH2-CD linker) and the catalytic domain. The relative contribution of these interactions to regulation of activity is poorly understood. Mutational analysis of Src and Lck revealed that interaction of the SH2-CD linker with the SH3 domain is crucial for regulation. Moreover, three sites of interaction of the linker with the catalytic domain, one at the beginning (Trp260) and two at the back of the small lobe, opposite the catalytic cleft (beta2/beta3 loop; alphaC/beta4 loop), impinge on Src activity. Other activating mutations map to the front of the catalytic domain in the loop preceding the alphaC-helix (beta3/alphaC loop). SH2-CD linker mutants are deregulated in mammalian cells but transform fibroblasts weakly, suggesting that the linker may bind cellular components. Interpretation of our results on the basis of the crystal structure of Src favours a model in which the correctly positioned SH2-CD linker exerts an inhibitory function on catalysis of Src family members by facilitating displacement of the alphaC-helix. This study may provide a template for the generation of deregulated versions of other protein kinases.  相似文献   

11.
Src family protein-tyrosine kinases are regulated by intramolecular binding of the SH2 domain to the C-terminal tail and association of the SH3 domain with the SH2 kinase-linker. The presence of two regulatory interactions raises the question of whether disruption of both is required for kinase activation. To address this question, we engineered a high affinity linker (HAL) mutant of the Src family member Hck in which an optimal SH3 ligand was substituted for the natural linker. Surface plasmon resonance analysis demonstrated tight intramolecular binding of the modified HAL sequence to SH3. Hck-HAL was then combined with a tail tyrosine mutation (Y501F) and expressed in Rat-2 fibroblasts. Surprisingly, Hck-HAL-Y501F showed strong transforming and kinase activities, demonstrating that intramolecular SH3-linker release is not required for SH2-based kinase activation. In Saccharomyces cerevisiae, which lacks the negative regulatory tail kinase Csk, wild-type Hck was more strongly activated in the presence of an SH3-binding protein (human immunodeficiency virus-1 Nef), indicating persistence of native SH3-linker interaction in an active Hck conformation. Taken together, these data support the existence of multiple active conformations of Src family kinases that may generate unique downstream signals.  相似文献   

12.
13.
Wang D  Huang XY  Cole PA 《Biochemistry》2001,40(7):2004-2010
Phosphorylation of a critical tail tyrosine residue in Src modulates its three-dimensional structure and protein tyrosine kinase activity. The protein tyrosine kinase Csk is responsible for catalyzing the phosphorylation of this key Src tyrosine residue, but the detailed molecular basis for Src recognition and catalysis is poorly understood. In this study, we investigate this phosphorylation event using purified recombinant Csk and Src proteins and mutants. It was shown that the apparent k(cat) and K(m) values for Csk phosphorylation of catalytically impaired Src (dSrc) are similar to the parameters for Csk-catalyzed phosphorylation of the Src family member Lck. The SH3 (Src homology 3) and SH2 (Src homology 2) domains of dSrc were fully dispensable with respect to rapid phosphorylation, indicating that the catalytic domain and tail of dSrc are sufficient for the high efficiency of dSrc as a substrate. Of the eight Src tail residues examined, only the fully conserved Glu (Y-3 position) and Gln (Y-1 position) investigated by alanine scanning mutagenesis caused large reductions (10--40-fold) in dSrc substrate efficiency. The Y-3 Glu requirement was stringent as conservative replacements with Asp or Gln were no better than Ala whereas replacement of the Y-1 Gln with Ile was readily tolerated. Interestingly, en bloc replacement of the tail with a seven amino acid consensus sequence derived from a peptide library analysis was no better than the wild-type sequence. Surprisingly, the dSrc Y527F protein, although not a Csk substrate, enhanced Csk-catalyzed phosphorylation of dSrc. These results and other data suggest that Src dimerization (or higher order oligomerization) is important for high-efficiency Csk-catalyzed phosphorylation of the Src tail.  相似文献   

14.
The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiologically relevant SH2 and SH3 interaction partners was studied for Lck and its relative Fyn by NMR spectroscopy. In contrast to Fyn, activating ligands do not induce communication between SH2 and SH3 domains in Lck. This can be attributed to the particular properties of the Lck SH3-SH2 linker which is shown to be extremely flexible thus effectively decoupling the behavior of the SH3 and SH2 domains. Measurements on the SH32 tandem from Lck further revealed a relative domain orientation that is distinctly different from that found in the Lck SH32 crystal structure and in other Src kinases. These data suggest that flexibility between SH2 and SH3 domains contributes to the adaptation of Src-family kinases to specific environments and distinct functions.  相似文献   

15.
The Tip protein from Herpesvirus saimiri interacts with the SH3 domain from the Src-family kinase Lck via a proline-containing sequence termed LBD1. Src-family kinase SH3 domains related to Lck have been shown to be dynamic in solution and partially unfold under physiological conditions. The rate of such partial unfolding is reduced by viral protein binding. To determine if the Lck SH3 domain displayed similar behavior, the domain was investigated with hydrogen exchange and mass spectrometry. Lck SH3 was found to be highly dynamic in solution. While other SH3 domains require as much as 10,000 sec to become totally deuterated, Lck SH3 became almost completely labeled within 200 sec. A partial unfolding event involving 8-10 residues was observed with a half-life of approximately 10 sec. Tip LBD1 binding did not cause gross structural changes in Lck SH3 but globally stabilized the domain and reduced the rate of partial unfolding by a factor of five. The region of partial unfolding in Lck SH3 was found to be similar to that identified for other SH3 domains that partially unfold. Although the sequence conservation between Lck SH3 and other closely related SH3 domains is high, the dynamics do not appear to be conserved.  相似文献   

16.
17.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

18.
Src protein-tyrosine kinase contains a myristoylation motif, a unique region, an Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a C-terminal tail. The C-terminal tail contains a Tyr residue, Tyr527. Phosphorylation of Tyr527 triggers Src inactivation, caused by Tyr(P)527 binding to the SH2 domain. In this study, we demonstrated that a conformational contribution, not affinity, is the predominant force for the intramolecular SH2-Tyr(P)527 binding, and we characterized the structural basis for this conformational contribution. First, a phosphopeptide mimicking the C-terminal tail is an 80-fold weaker ligand than the optimal phosphopeptide, pYEEI, and similar to a phosphopeptide containing three Ala residues following Tyr(P) in binding to the Src SH2 domain. Second, the SH2-Tyr(P)527 binding is largely independent of the amino acid sequence surrounding Tyr(P)527, and only slightly decreased by an inactivating mutation in the SH2 domain. Furthermore, even the unphosphorylated C-terminal tail with the sequence of YEEI suppresses Src activity by binding to the SH2 domain. These experiments demonstrate that very weak affinity is sufficient for the SH2-Tyr(P)527 binding in Src inactivation. Third, the effective intramolecular SH2-Tyr(P)527 binding is attributed to a conformational contribution that requires residues Trp260 and Leu255. Although the SH3 domain is essential for Src inactivation by Tyr(P)527, it does not contribute to the SH2-Tyr(P)527 binding. These findings suggest a conformation-based Src inactivation model, which provides a unifying framework for understanding Src activation by a variety of mechanisms.  相似文献   

19.
Src homology 2 (SH2) regions are short (approximately 100 amino acids), non-catalytic domains conserved among a wide variety of proteins involved in cytoplasmic signaling induced by growth factors. It is thought that SH2 domains play an important role in the intracellular response to growth factor stimulation by binding to phosphotyrosine containing proteins. In this paper we apply the techniques of multiple sequence alignment, secondary structure prediction and conservation analysis to 67 SH2 domain amino acid sequences. This combined approach predicts seven core secondary structure regions with the pattern beta-alpha-beta-beta-beta-beta-alpha, identifies those residues most likely to be buried in the hydrophobic core of the native SH2 domain, and highlights patterns of conservation indicative of secondary structural elements. Residues likely to be involved in phosphotyrosine binding are shown and orientations of the predicted secondary structures suggested which could enable such residues to cooperate in phosphate binding. We propose a consensus pattern that encapsulates the principal conserved features of the SH2 domains. Comparison of the proposed SH2 domain of akt to this pattern shows only 12/40 matches, suggesting that this domain may not exhibit SH2-like properties.  相似文献   

20.
The Crk-associated tyrosine kinase substrate p130cas (CAS) is a docking protein containing an SH3 domain near its N terminus, followed by a short proline-rich segment, a large central substrate domain composed of 15 repeats of the four amino acid sequence YxxP, a serine-rich region and a carboxy-terminal domain, which possesses consensus binding sites for the SH2 and SH3 domains of Src (YDYV and RPLPSPP, respectively). The SH3 domain of CAS mediates its interaction with several proteins involved in signaling pathways such as focal adhesion kinase (FAK), tyrosine phosphatases PTP1B and PTP-PEST, and the guanine nucleotide exchange factor C3G. As a homolog of the corresponding Src docking domain, the CAS SH3 domain binds to proline-rich sequences (PxxP) of its interacting partners that can adopt a polyproline type II helix. We have determined a high-resolution X-ray structure of the recombinant human CAS SH3 domain. The domain, residues 1-69, crystallized in two related space groups, P2(1) and C222(1), that provided diffraction data to 1.1 A and 2.1 A, respectively. The crystal structure shows, in addition to the conserved SH3 domain architecture, the way in which the CAS characteristic amino acids form an atypically charged ligand-binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by the CAS SH3 domain. The structure enables modelling of the docking interactions to its ligands, for example from focal adhesion kinase, and supports structure-based drug design of inhibitors of the CAS-FAK interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号