首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

2.
To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.  相似文献   

3.
Because infiltration of mononuclear cells and fibroblast proliferation are associated in chronic inflammatory lesions, we tested the hypothesis that leukotrienes (LT), a product of activated mononuclear cells, may modulate fibroblast growth. Proliferation of cultured human skin fibroblasts was estimated by [3H]thymidine incorporation and cell count at increasing concentrations (0.1 nM to 0.1 microM) of LTC4 or LTD4. LTC4 and LTD4 stimulated cell growth in a dose-dependent manner only in the presence of 50 microM indomethacin. Under similar conditions, LTE4 but not LTB4 (0.1 microM) was active. Both asynchronous, growing cells and synchronous, quiescent cells were sensitive to LT when prostaglandin (PG) synthesis was suppressed by indomethacin. Other blockers of cyclooxygenase such as ibuprofen and aspirin exhibited identical permissive activity, and the effect of indomethacin was totally abolished by addition of PGE2. LTC4 modified neither [3H]arachidonic acid release from prelabeled fibroblasts nor PGE2 production by fibroblasts. These results demonstrate that the sulfidopeptide LT stimulate fibroblast proliferation only when the endogenous synthesis of PG is blocked, but they do not enhance the synthesis of PG in their target cells showing no evidence for a negative feed-back loop. Nevertheless, it seems likely that the initiation and development of the fibrotic process in the different tissues depends in part on the local balance between PG and LT productions.  相似文献   

4.
5.
《Life sciences》1996,58(18):1509-1517
In order to clarify the role played by interleukin-2 (IL-2) in the regulation of fibroblast function, we investigated the effect of rat IL-2 and human recombinant IL-2 on 3T3 fibroblast proliferation and collagen synthesis. Fibroblasts were incubated with various concentrations of IL-2 for different periods of time. IL-2 was found to decrease in time- and dose-dependent manner the proliferation of 3T3 fibroblasts. This effect correlated with ability of IL-2 to enhance PGE2 production by 3T3 fibroblasts. When 3T3 fibroblasts were cocultured with rat peritoneal mast cells (MC), the growth-inhibiting effect of IL-2 was significantly less pronounced. Treatment of the cultures with IL-2 had no effect on collagen production by both 3T3 fibroblasts and fibroblasts cocultured with MC. In conclusion, in this study we provide evidence that IL-2, the key cytokine in T-cell growth and differentiation, can affect fibroblast functions.  相似文献   

6.
We examined the effects of transforming growth factor-beta (TGF-beta) on the production of collagen by cultures of human embryonic lung fibroblasts. TGF-beta at 0.1 ng/ml appeared to activate selectively extracellular collagen accumulation as compared with total protein production. A maximal effect inducing a 2-3-fold increase in collagen and total protein production occurred at a dose of 1.0 ng/ml in fibroblast cultures. TGF-beta had no effect on fibroblast proliferation after a 24- and 48-h exposure, including cultures that received a second dose after 24 h. Collagenase digestion of radiolabeled collagen derived from TGF-beta-treated and -untreated cultures revealed no differences in the extent of hydroxylation (37.3 versus 33.4%). TGF-beta increased the production of types I and III collagen without affecting the proportion of collagen types. Fibroblast cultures maintained in medium containing TGF-beta sustained an activated rate of collagen production of 5 nmol/ml/24 h over at least 72 h. We found that epidermal growth factor slightly enhanced TGF-beta-induced collagen formation, whereas TGF-beta increased the proliferative effect of epidermal growth factor. Taken together, these data indicate that collagen production and cell proliferation can be independently regulated and that TGF-beta may have a role in the resolution of tissue injury by stimulating fibroblast-derived collagen synthesis.  相似文献   

7.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

8.
Human dermal fibroblasts, cultured as suspensions in collagen gels and as monolayers, were stimulated with recombinant human interleukin-1 beta (rIL 1 beta) at 72 h, and prostaglandin E2 (PGE2) was assayed 24 h later. Fibroblasts in gels were less responsive to rIL 1 beta than monolayers, PGE2 synthesis increasing from less than 1 ng/microgram DNA without rIL 1 beta to maxima of 11.3 and 32.9 ng/micrograms DNA, with half maximal release occurring at 7.47 and 0.75 pM rIL 1 beta for the gel and monolayer cultures, respectively. Increased PGE2 was first detected 4 h after addition of rIL 1 beta to gels and was inhibited by 10(-5) M indomethacin. The amount of PGE2 synthesized per fibroblast increased with the time the gels had been in culture when stimulated with rIL 1 beta and was proportional to the number of fibroblasts in the gels, but inversely related to the collagen concentration. A common feature of these experiments was significantly greater induction of PGE2 synthesis at higher cell densities in collagen gels. Exogenous 10(-4) M arachidonic acid further increased PGE2 synthesis by rIL 1 beta-stimulated fibroblasts, but the differential in the amount of PGE2 released from fibroblasts at high and low population densities in the gels was maintained. These results are consistent with interleukin 1 (IL 1) stimulating PGE2 synthesis in dermal fibroblasts by increasing cyclooxygenase activity. Furthermore, the results show that dermal fibroblasts have an additional regulatory mechanism, related to the cell population densities or their interactions with an extracellular matrix, to finely modulate the amount of PGE2 synthesized in response to IL 1.  相似文献   

9.
The role of prostaglandins in the regulation of lipopolysaccharide (LPS)-induced interleukin-1 (IL-1) production by murine C3H/HeN resident peritoneal macrophages was studied. IL-1 production was initially studied in the presence of piroxicam and indomethacin, both inhibitors of prostaglandin biosynthesis. IL-1 was assayed using the IL-1-dependent proliferative response of C3H/HeJ thymocytes. LPS stimulation resulted in 15 to 20 ng/ml of prostaglandin E2 (PGE2) produced in the first hour of culture. IL-1-containing supernatants from drug-treated macrophages at dilutions of up to 1:32 resulted in enhanced thymocyte proliferation compared to control, non-drug-treated cultures and contained less than 2 ng/ml of PGE2. Similar enhancement of proliferation could be obtained by incubating non-drug-treated supernatants with monoclonal anti-PGE2 but not anti-thromboxane B2 (TxB2) antibody. Further dilutions of the drug-treated supernatants gave thymocyte proliferation responses which were indistinguishable from control cultures and, correspondingly, had identical values for IL-1 production. The absence of an effect on IL-1 production was confirmed by quantitation of intracellular IL-1 alpha using goat anti-IL-1 alpha antibody and by quantitation of supernatant IL-1 receptor competition assay. Exogenous PGE2, in the concentration range produced in macrophage supernatants (10-20 ng/ml), directly inhibited IL-1-stimulated thymocyte proliferation. Finally, when macrophages were stimulated with LPS for 24 hr in the presence of added PGE2, thymocyte proliferation was inhibited at the lowest supernatant dilutions, but as the IL-1-containing supernatants were diluted out, the assay curves were indistinguishable from non-PGE2-treated control. Thus, in this system, PGE2 has no effect on IL-1 synthesis, but rather has a direct inhibitory effect on thymocyte proliferation. Nonsteroidal anti-inflammatory drugs are not stimulating IL-1 production but are, in fact, relieving inhibition of the thymocyte IL-1 assay caused by the presence of prostaglandins.  相似文献   

10.
Although PGE(2) is a potent inhibitor of fibroblast function, PGE(2) levels are paradoxically elevated in murine lungs undergoing fibrotic responses. Pulmonary fibroblasts from untreated mice expressed all four E prostanoid (EP) receptors for PGE(2). However, following challenge with the fibrogenic agent, bleomycin, fibroblasts showed loss of EP2 expression. Lack of EP2 expression correlated with an inability of fibroblasts from bleomycin-treated mice to be inhibited by PGE(2) in assays of proliferation or collagen synthesis and blunted cAMP elevations in response to PGE(2). PGE(2) was similarly unable to suppress proliferation or collagen synthesis in fibroblasts from EP2(-/-) mice despite expression of the other EP receptors. EP2(-/-), but not EP1(-/-) or EP3(-/-) mice, showed exaggerated fibrotic responses to bleomycin administration in vivo as compared with wild-type controls. EP2 loss on fibroblasts was verified in a second model of pulmonary fibrosis using FITC. Our results for the first time link EP2 receptor loss on fibroblasts following fibrotic lung injury to altered suppression by PGE(2) and thus identify a novel fibrogenic mechanism.  相似文献   

11.
Uncontrolled fibroblast activation is one of the hallmarks of fibrotic lung disease. Prostaglandin E(2) (PGE(2)) has been shown to inhibit fibroblast migration, proliferation, collagen deposition, and myofibroblast differentiation in the lung. Understanding the mechanisms for these effects may provide insight into the pathogenesis of fibrotic lung disease. Previous work has focused on commercially available fibroblast cell lines derived from tissue whose precise origin and histopathology are often unknown. Here, we sought to define the mechanism of PGE(2) inhibition in patient-derived fibroblasts from peripheral lung verified to be histologically normal. Fibroblasts were grown from explants of resected lung, and proliferation and collagen I expression was determined following treatment with PGE(2) or modulators of its receptors and downstream signaling components. PGE(2) inhibited fibroblast proliferation by 33% and collagen I expression by 62%. PGE(2) resulted in a 15-fold increase in intracellular cAMP; other cAMP-elevating agents inhibited collagen I in a manner similar to PGE(2). These effects were reproduced by butaprost, a PGE(2) analog selective for the cAMP-coupled E prostanoid (EP) 2 receptor, but not by selective EP3 or EP4 agonists. Fibroblasts expressed both major cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP-1 (Epac-1), but only a selective PKA agonist was able to appreciably inhibit collagen I expression. Treatment with okadaic acid, a phosphatase inhibitor, potentiated the effects of PGE(2). Our data indicate that PGE(2) inhibits fibroblast activation in primary lung fibroblasts via binding of EP2 receptor and production of cAMP; inhibition of collagen I proceeds via activation of PKA.  相似文献   

12.
Guan H  Zhao Z  He F  Zhou Q  Meng Q  Zhu X  Zheng Z  Hu D  Chen B 《Cryobiology》2007,55(1):52-59
The purpose of present study is to investigate the effects of two different thawing temperatures on normal human fibroblast which dealt with -20 degrees C, hoping to provide a clue for further study in reducing excessive collagen formation after cryotherapy on skin diseases in vitro, as well as in differentiation disorders. In order to elucidate its action mechanism, a programmable freezing device was developed to apply freezing temperatures on cell cultures. The effects of two different thawing temperatures on frozen fibroblast proliferation, viability, collagen synthesis and alpha smooth muscle actin (alpha-SMA) expressing were investigated. We found that compared with 37 degrees C, thawing with 20 degrees C yielded same motility. But there are significant differences in terms of the alpha-SMA expression (P<0.05) of fibroblast and collagen I, III synthesis (P<0.01) between two groups after 72h. The results suggest that comparing with slow thawing; rapid thawing cannot only keep the same cell's damage, but also can modify collagen synthesis and differentiation of fibroblasts. It may be more suitable for the cryosurgical treatment of keloids and benign skin diseases.  相似文献   

13.
It has previously been demonstrated that interleukin-1 (IL-1) is expressed in a variety of fibroblast cell lines. In this study, we investigated the mechanisms involved in the regulation of IL-1 beta production by cultured human dermal fibroblasts. We have shown that IL-1 beta is constitutively expressed as a cell-associated form, with no soluble form detectable in control cell or in stimulated cell supernatants. IL-1 alpha and tumor necrosis factor-alpha (TNF-alpha) exerted a dose-dependent stimulation on the production of the cell-associated IL-1 beta, as estimated using a specific enzyme linked immunosorbent assay (ELISA). As expected, this effect was accompanied by a huge release of prostaglandin E2 (PGE2) and a transient rise in intracellular cyclic AMP. Furthermore, IL-1 beta production was elevated to a lesser extent by the addition of increasing concentrations of the protein kinase C activator phorbol myristate acetate or by low concentration (0.001 microgram/ml) of PGE2. In contrast, higher concentrations (0.1 and 1 micrograms/ml) of PGE2, as well as exogenous dibutyryl-cyclic AMP, were clearly inhibitory. H7, an inhibitor of protein kinases also reduced the stimulatory effect of IL-1 alpha and TNF-alpha. Together with the results obtained with phorbol myristate acetate, these data suggest that protein kinase C may play a role in the upregulation of IL-1 beta expression in normal skin fibroblasts. The addition of indomethacin not only suppressed prostaglandin synthesis, but also dramatically reduced cyclic AMP formation, probably because the PGE2-induced stimulation of adenylate cyclase was abolished. This resulted in a strong potentiation of the stimulatory effect of IL-1 alpha and TNF-alpha, supporting the role of both the cyclooxygenase and adenylate cyclase pathways in the endogenous downregulation of IL-1 beta induction by the two cytokines studied.  相似文献   

14.
Previous experiments have shown that dietary n-6 and n-3 polyenoic fatty acids (PFA) have different effects on collagen production, a process that may be related to the formation of prostaglandins (PG). This study tested the hypothesis that fibroblast collagen production could be regulated by different n- 6:n-3 PFA ratios and that the effects were mediated by PGE(2) and altered signaling via the different PGE receptor subtypes. Compared to a bovine serum albumin control, eicosapentaenoic acid (EPA; 20:5 n-3) treated cells significantly (P < 0.05) increased both collagen production and collagen as a percentage of total cellular protein (C-PTP), but arachidonic acid (AA; 20:4 n-6) reduced collagen production and C-PTP. As the amount of AA decreased and that of EPA increased, collagen production and C-PTP increased, especially when ratio of n-6:n-3 PFA was less than 1:1. C-PTP was significantly correlated with the amount of PGE(2) in the medium. AA- or EPA-treated cells produced similar C-PTP when incubated with 10(-6) M indomethacin, a cyclooxygenase inhibitor. Addition of exogenous PGE(2) to cell cultures treated with 10(-6) M indomethacin for 48 hrs decreased C-PTP in both AA and EPA groups. Decreased C-PTP was observed in AA-treated cells exposed to EP1, EP2, and EP4 PGE receptor agonists and in EPA-treated cells exposed to EP2 and EP4 agonists. AA-treated cell responded to activators of cyclic adenosine monophosphate and protein kinase C by decreasing C-PTP, but EPA-treated cells were unresponsive. In conclusion, collagen production in 3T3-Swiss fibroblasts induced by different n-6:n-3 PFA ratios was correlated with PGE(2) production and altered responsiveness and signaling via the different PGE receptor subtypes.  相似文献   

15.
大鼠肺泡巨噬细胞对人胚肺成纤维细胞增殖的抑制作用   总被引:2,自引:0,他引:2  
Zhang JS  Yu FJ  Qu SL  Li X 《生理学报》2002,54(3):225-228
实验采用[^3H]TdR掺入标记法测定微量培养人胚肺成纤维细胞的增殖,观察到健康大鼠的肺泡巨噬细胞(alveolar macrophage,AM)可抑制成纤维细胞增殖。经调理的酵母多糖激活后,AM的抑制作用加强;而经消炎痛处理的AM,抑制作用转为被促进增殖作用所取代;测定AM上清液中前歹腺素E(prostaglandin E,PGE)含量,显示其抑制作用与PGE含量相关。结果提示,AM有抑制作促进肺成纤维细胞增殖的双重作用,正常时以抑制作用占优势;PGE可能是AM产生的主要的肺纤维化抑制因子。  相似文献   

16.
Abnormal growth of cardiac fibroblasts is critically involved in the pathophysiology of cardiac hypertrophy/remodeling. Hexarelin is a synthetic growth hormone secretagogue (GHS), which possesses a variety of cardiovascular protective activities mediated via the GHS receptor (GHSR), including improving cardiac dysfunction and remodeling. The cellular and molecular mechanisms underlying the effect of GHS on cardiac fibrosis are, however, not clear. In this report, cultured cardiac fibroblasts from 8-day-old rats were stimulated with ANG II or FCS to induce proliferation. The fibroblast proliferation and DNA and collagen synthesis were evaluated utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (3)H-thymidine incorporation, and (3)H-proline incorporation. The level of mRNA of transforming growth factor (TGF)-beta was evaluated by RT-PCR, and the active TGF-beta1 release from cardiac fibroblasts was evaluated by ELISA. The level of cellular cAMP was measured by radioimmunoassay. In addition, the effects of 3,7-dimethyl-l-propargylxanthine (DMPX; a specific adenosine receptor A(2)R antagonist) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a specific A(1)R antagonist) were tested. It was found that incubation with 10(-7) mol/l hexarelin for 24 h 1) inhibited the ANG II-induced proliferation and collagen synthesis and the 5% FCS- and TGF-beta-induced increase of DNA synthesis in cardiac fibroblast and 2) reduced ANG II-induced upregulation of TGF-beta mRNA expression and active TGF-beta1 release from fibroblasts. Hexarelin increased the cellular level of cAMP in cardiac fibroblasts. DMPX (10(-8) mol/l) but not DPCPX abolished the effect of hexarelin on cardiac fibroblast DNA synthesis. It is concluded that hexarelin inhibits DNA and collagen synthesis and proliferation of cardiac fibroblasts through activation of both GHSR and A(2)R and diminishment of ANG II-induced increase in TGF-beta expression and release.  相似文献   

17.
The effect of PGE2 on neurotransmission in the canine tracheal strip dissected free of epithelium was studied in the single sucrose gap and organ bath. PGE2 was a potent inhibitor of the initiation of excitatory junction potentials (ejps) by just submaximal nerve stimulation. In a concentration of 10(-9) or 10(-8) M PGE2 nearly or completely abolished them. Contractile responses to field stimulation in the sucrose gap at 27 degrees C or in muscle baths at 37 degrees C were also reduced or abolished by PGE2 in the same dose range; reductions were greater at low frequency. Responses to acetylcholine were also depressed but significantly less than to field stimulation. These are consistent with major presynaptic as well as some postsynaptic inhibitory actions of PGE2. No evidence was obtained that endogenous PGE2 affected excitatory junction potentials and contractions; i.e. they were stable for hours and unaffected by indomethacin 10(-6) and 10(-5) M under our conditions. Post-stimulus potentiation of ejps amplitude, maximum at 10 s, was observed and became more marked after the first ejp had been markedly reduced or abolished by PGE2. This potentiation was unaffected by indomethacin. It was suggested that a presynaptic process inhibited by PGE2 might participate in this potentiation. The canine trachea is a useful preparation when studied under the experimental condition used here for study of effects of products of arachidonate on neurotransmission.  相似文献   

18.
We investigated prostanoid biogenesis by human colonic fibroblasts (CCD-18Co cells and nine primary fibroblast cultures) exposed to a primary (cholic, CA) or a secondary (deoxycholic, DCA) bile acid. Basal PGE2 levels in CCD-18Co cultures and fibroblast strains initiated from normal and adenocarcinomatous colon, respectively, were 1.7 +/- 0.3, 4.0 +/- 2.0, and 15.0 +/- 4.8 ng/mg protein. Peak levels 24 h after exposure to DCA (300 microM) rose, respectively, seven-, six- and sevenfold, but CA elicited no such responses. Increases in PGE2 synthesis were preceded by sequential increases in PGH synthase-2 mRNA and protein expression and were fully prevented by a nonselective (indomethacin) or a selective (celecoxib) nonsteroidal anti-inflammatory drug. DCA, but not CA, caused abrupt, transient increases in fibroblast intracellular Ca2+ concentration ([Ca2+]i) approximately 1 min after exposure. Increased [Ca2+]i was required for DCA-mediated induction of PGE2 synthesis, and protein kinase C was a further essential component of this signaling pathway. Colonic fibroblasts may be a major target for prostanoid biogenesis induced by fecal bile acids and, potentially, other noxious actions of these agents.  相似文献   

19.
Prostaglandin E(2) (PGE(2)) is a potent suppressor of fibroblast activity. We previously reported that bleomycin-induced pulmonary fibrosis was exaggerated in granulocyte-macrophage colony-stimulating factor knockout (GM-CSF(-/-)) mice compared with wild-type (GM-CSF(+/+)) mice and that increased fibrosis was associated with decreased PGE(2) levels in lung homogenates and alveolar macrophage cultures. Pulmonary fibroblasts and alveolar epithelial cells (AECs) represent additional cellular sources of PGE(2) within the lung. Therefore, we examined fibroblasts and AECs from GM-CSF(-/-) mice, and we found that they elaborated significantly less PGE(2) than did cells from GM-CSF(+/+) mice. This defect was associated with reduced expression of cyclooxygenase-1 and -2 (COX-1 and COX-2), key enzymes in the biosynthesis of PGE(2). Additionally, proliferation of GM-CSF(-/-) fibroblasts was greater than that of GM-CSF(+/+) fibroblasts, and GM-CSF(-/-) AECs were impaired in their ability to inhibit fibroblast proliferation in coculture. The addition of GM-CSF to fibroblasts from GM-CSF(-/-) mice increased PGE(2) production and decreased proliferation. Similarly, AECs isolated from GM-CSF(-/-) mice with transgenic expression of GM-CSF under the surfactant protein C promoter (SpC-GM mice) produced more PGE(2) than did AEC from control mice. Finally, SpC-GM mice were protected from fluorescein isothiocyanate-induced pulmonary fibrosis. In conclusion, these data demonstrate that GM-CSF regulates PGE(2) production in pulmonary fibroblasts and AECs and thus plays an important role in limiting fibroproliferation.  相似文献   

20.
Tumor necrosis factor (TNF) is known to be a mitogen for human diploid FS-4 fibroblasts. We have shown in an earlier study (Hori et al. (1989) J. Cell. Physiol. 141, 275-280) that indomethacin further enhances the cell proliferation stimulated by TNF. Since indomethacin inhibits the activity of cyclooxygenase, the role of prostaglandins in TNF-stimulated cell growth was examined. Cell growth stimulated by TNF and indomethacin was inhibited by exogenously added prostaglandins (PGE2, PGF2 alpha, and PGD2), among which PGE2 caused the greatest inhibition of cell growth. Treatment of FS-4 cells with 10 ng/ml TNF resulted in the release of prostaglandins (PGE2, 6-keto-PGF1 alpha, PGA2, PGD2, and PGF2 alpha) 2 to 4 fold over that of untreated cells. The amount of all these prostaglandins increased in a time-dependent manner over 6 h after treatment. In both TNF-treated and control cells, PGE2 was released as the predominant prostaglandin. Furthermore, when PGE2 production and DNA synthesis were determined in FS-4 cells treated with increasing doses of indomethacin, these two cellular responses were inversely affected by indomethacin. These data show that prostaglandins induced by TNF antagonize growth stimulatory action of TNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号