首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteins of respiratory syncytial virus have not been clearly identified due to the lability of the virus and difficulties in its purification. We have pulse-labeled respiratory syncytial virus with [35S]methionine and [35S]cysteine and analyzed cell lysates by polyacrylamide gel electrophoresis. Five 35S-labeled viral proteins ranging in molecular weight from 21,000 to 73,000 (VP73, VP44, VP35, VP28, and VP21) were easily discernable above background cellular proteins. Treatment of the infected cells with 0.15 M NaCl before labeling suppressed host cell protein synthesis and allowed clearer visualization of the five viral proteins by polyacrylamide gel electrophoresis. Three glycoproteins (VGP 92, VGP 50, and VGP 17) were also identified after labeling with [3H]glucosamine. Five of these polypeptides (VP51, VP44, VP35, VP28, and VGP92) were shown to be antigenically active because they could be immunoprecipitated with anti-respiratory syncytial virus antibody produced in New Zealand white rabbits, cotton rats, and humans before analysis by polyacrylamide gel electrophoresis.  相似文献   

2.
J S Brugge  E Erikson  R L Erikson 《Cell》1981,25(2):363-372
Sera from rabbits bearing tumors induced by Rous sarcoma virus (RSV) were previously found to contain antibody to the RSV transforming protein, pp60src. Two additional transformation-specific phosphoproteins from RSV-transformed avian cells are immunoprecipitated with these sera. These proteins, having molecular weights of 90,000 (pp90) and 50,000 (pp50), are not precipitated from uninfected or transformation-defective virus-infected cells and are not related to any RSV structural proteins. Neither pp50 nor pp90 shares any partial or complete proteolytic cleavage peptides with pp60src, suggesting that pp90 and pp50 do not represent either a precursor or a cleavage product of pp60src. Sedimentation analysis of RSV-transformed cell lysates on glycerol gradients revealed that the RSV pp60src protein is present as two forms, one of which represents the majority (95%) of pp60src and sediments as a monomer, 60,000 molecular weight protein and the other of which sediments with pp90 and pp50 as an apparent 200,000 molecular weight complex. Lysates from cells transformed by viruses containing a temperature-sensitive defect in the src gene contain a greater percentage of pp60src associated with pp90 and pp50 under both permissive (35°C) and nonpermissive (41°C) conditions compared to wild-type virus-infected cell lysates. Phosphoserine and phosphotyrosine were found associated with pp60src molecules that sedimented as a monomer, whereas pp60src molecules that are complexed with pp90 and pp50 contain phosphoserine and greatly reduced amounts of phosphotyrosine. Only the monomer form of pp60src is capable of phosphorylating IgG in the immune complex phosphotransferase reaction. Normal uninfected chicken cells contain a protein that shares identical partial proteolytic cleavage peptides with the pp90 protein immunoprecipitated from RSV-transformed cells. This pp90 protein is one of the major cytoplasmic proteins in uninfected cells. Antibody directed against pp90 also immunoprecipitates pp60src and pp50 from lysates of RSV-transformed chicken cells.  相似文献   

3.
A number of mammalian cell surface proteins are anchored by glycoinositol phospholipid (GPI) structures that are preassembled and transferred to them in the endoplasmic reticulum. The GPIs in these proteins contain linear ethanolamine (EthN)-phosphate (P)-6ManManManGlcN core glycan sequences bearing an additional EthN-P attached to the Man residue (Man 1) proximal to GlcN. The biochemical precursors of mammalian GPI anchor structures are incompletely characterized. In this study, putative [3H]Man-labeled GPI precursors were obtained by in vitro GDP-[3H] Man labeling of HeLa cell microsomes and by in vivo [3H]Man labeling of class B and F Thy-1 negative murine lymphoma mutants known to accumulate incomplete GPIs. The high performance liquid chromatography-purified in vitro and accumulated in vivo GPI products were structurally analyzed by nitrous acid deamination, hydrofluoric acid, trifluoroacetic acid hydrolysis, biosynthetic labeling, and exoglycosidase treatment. The data were consistent with a biosynthetic scheme in which Man and EthN-P are added stepwise to the developing glycan. Several additional points were demonstrated: 1) putative mammalian GPI precursors contain incomplete core glycans corresponding to those in previously characterized trypanosome GPI precursors. 2) The proximal EthN-P found in mature mammalian GPI anchor structures is added to Man 1 prior to incorporation of Man 2 and Man 3. 3) Glycans in the incomplete GPIs that accumulate in classes B and F lymphoma mutants consist of Man2- and Man3GlcN in which EthN-P is linked to Man 1. 4) Distal EthN-P linked to the 6-position of Man, characteristic of the complete GPI core, is found both in a subsequent GPI species with the glycan sequence EthN-P-6ManMan(EthN-P----)ManGlcN and in a more polar GPI product.  相似文献   

4.
In this study, we have used photoaffinity labeling by [32P]azido-GTP as well as [32P]ADP-ribosylation by pertussis toxin (PT) and cholera toxin (CT) to identify GTP-binding proteins associated with mouse T-lymphoma plasma membranes. Our results indicate that GP85 (CD44) can be photoaffinity labeled by [32P] azido-GTP and [32P]ADP-ribosylated by both PT and CT. Using purified GP85 (CD44) obtained by Triton X-100 extraction, wheat germ agglutinin-Sepharose, and anti-GP85 (CD44) antibody affinity chromatographies, we have further characterized GP85 (CD44) as a GTP-binding protein. GP85 (CD44) is found to bind guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) in a time- and dose-dependent manner with a dissociation constant of 0.83 nM. Importantly, GP85 (CD44) appears to display a GTPase activity which hydrolyzes [gamma-32P]GTP at a rate of 0.011 mol of Pi released/mol of GP85 (CD44)/min. This GTPase activity can be readily inhibited by PT- or CT-mediated ribosylation of GP85 (CD44). Most interestingly, GTP binding significantly enhances the interaction of purified GP85 (CD44) with ankyrin, whereas ADP-ribosylation of GP85 (CD44) by PT or CT inhibits the GTP-induced increase in ankyrin binding to GP85 (CD44). In addition to GP85 (CD44) being the first reported transmembrane GTP-binding protein, these results suggest that GTP plays an important role in promoting the interaction between GP85 (CD44) and its underlying membrane cytoskeleton through ankyrin.  相似文献   

5.
The glycoprotein (GP) Ib-IX complex is a major component of the platelet membrane which mediates adhesion of platelets to exposed subendothelium. GP Ib is a heterodimer with a large alpha chain (Mr = 135,000-145,000) and small beta chain (Mr = 22,000-27,000) linked by a disulfide bond(s). GP Ib is bound in a noncovalent 1:1 complex with GP IX (Mr = 17,000-22,000). We labeled isolated human platelets with [3H] palmitate or surface-labeled platelet membrane glycoproteins with sodium periodate-[3H]sodium borohydride and immunoprecipitated the GP Ib-IX complex from radiolabeled platelet lysates using a mouse monoclonal antibody (SZ.1) which recognizes the intact complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates from [3H]palmitate-labeled platelets revealed two radiolabeled bands under reducing conditions at 24 and 19 kDa and two bands under nonreducing conditions at 170 and 19 kDa. As demonstrated by the parallel analysis of immunoprecipitates from periodate-[3H]sodium borohydride-labeled platelets, the [3H]palmitate-labeled bands obtained under reducing conditions corresponded to GP Ib beta and GP IX and the ones obtained under nonreducing conditions to intact GP Ib and GP IX, respectively. Using alkaline methanolysis followed by high pressure liquid chromatography analysis of the methanolysis products, we demonstrated that the radioactivity associated with the GP Ib-IX complex from [3H]palmitate-labeled platelets was, in fact, covalently bound [3H]palmitate in ester linkage to protein. The protein-fatty acid linkage was also disrupted by hydroxylamine at neutral pH. Thus, this study demonstrates that GP Ib beta and GP IX in human platelets are both fatty acid-acylated with palmitate through thioester linkages.  相似文献   

6.
The active center histidines of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system proteins; histidine-containing protein, enzyme I, and enzyme IIA(Glc) were substituted with a series of amino acids (serine, threonine, tyrosine, cysteine, aspartate, and glutamate) with the potential to undergo phosphorylation. The mutants [H189E]enzyme I, [H15D]HPr, and [H90E]enzyme IIA(Glc) retained ability for phosphorylation as indicated by [(32)P]phosphoenolpyruvate labeling. As the active center histidines of both enzyme I and enzyme IIA(Glc) undergo phosphorylation of the N(epsilon2) atom, while HPr is phosphorylated at the N(delta1) atom, a pattern of successful substitution of glutamates for N(epsilon2) phosphorylations and aspartates for N(delta1) phosphorylations emerges. Furthermore, phosphotransfer between acyl residues: P-aspartyl to glutamyl and P-glutamyl to aspartyl was demonstrated with these mutant proteins and enzymes.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) induces altered phosphoinositide metabolism in baby hamster kidney (BHK) cells, measured as incorporation of [3H]inositol or [32P]Pi [Langeland, Haarr & Holmsen (1986) Biochem. J. 237, 707-712]. We now report that this response in the inositol phospholipids is dependent on virus-specific proteins synthesized in the beta (early) stage of virus protein synthesis. This was demonstrated both by resistance to the inhibitory effect of cycloheximide after this stage of infection, and by the use of temperature-sensitive (ts) mutants of HSV-1; ts mutants in which protein synthesis was blocked so that only the alpha proteins were expressed showed a PIP2/PIP (phosphatidylinositol 4,5-bisphosphate/phosphatidylinositol 4-monophosphate) ratio similar to uninfected cells, while ts mutants which were defective in protein synthesis at a late beta stage or later showed increased PIP2/PIP ratios similar to cells infected by wild type HSV-1.  相似文献   

8.
Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae.   总被引:12,自引:0,他引:12  
Yeast secretory (sec) mutants that are blocked in the transport of secretory proteins and accumulate membrane organelles were used to study the biosynthesis of fatty acid-acylated proteins. Four proteins were labeled with [3H]palmitate in sec mutants accumulating endoplasmic reticulum membranes. Three of these (molecular weights approximately equal to 20,000, 50,000, and 120,000) were N-linked glycoproteins, based on their ability to be labeled with [3H]mannose and their sensitivity to endoglycosidase H. The fourth protein (molecular weight approximately equal to 30,000) also was labeled with [3H]mannose but was insensitive to endoglycosidase H; it appeared to contain O-linked sugars. In sec mutants accumulating Golgi membranes or post-Golgi vesicles, a 35-kilodalton protein was labeled with [3H]palmitate. Analysis of Staphylococcus aureus protease V8 digests and pulse-chase experiments indicated that the 30-kilodalton protein was a precursor of 35 kilodaltons. None of these proteins was labeled with [3H]palmitate in a sec mutant that blocked the penetration of nascent polypeptides into endoplasmic reticulum; thus, acylation occurred in endoplasmic reticulum. All four proteins could be recovered from fractions enriched for yeast membranes. Fatty acids were not released from proteins by boiling in sodium dodecyl sulfate or extraction with organic solvents but were recovered as methyl esters after proteins were treated with KOH-methanol, a reaction characteristic of an acyl ester linkage.  相似文献   

9.
Six monoclonal antibodies directed against respiratory syncytial virus proteins were produced. Each was characterized by immunoprecipitation and indirect immunofluorescence. One was directed against the nucleocapsid protein. NP 44, two were directed against a 37,000-dalton protein, two were directed against the major envelope glycoprotein, GP 90, and one was directed against the 70,000-dalton envelope protein, VP 70. Indirect immunofluorescence stain patterns of infected HEp-2 cells defined GP 90 and VP 70 as viral proteins expressed on the cell surface, whereas NP 44 and the 37,000-dalton protein were detected as intracytoplasmic inclusions. One of the anti-GP 90 antibodies neutralized virus only in the presence of complement but did not inhibit cell-cell fusion. The anti-VP 70 antibody neutralized virus without complement and inhibited cell-cell fusion of previously infected HEp-2 cells, thus identifying VP 70 as the fusion protein.  相似文献   

10.
An affinity chromatography-based method has been developed for estrogen receptor isolation which requires the inclusion of sodium molybdate in purification buffers for maintaining the large 9-10S form of the receptor. The protein products obtained from affinity chromatography of calf uterine receptor extracts or from extracts presaturated with estradiol have been analyzed by gel electrophoresis under denaturing conditions. Major estrogen sensitive proteins were peptides with Mr approximately 90,000, 65,000 and 50,000. Two additional proteins (60,000 and 53,000) of lower abundance and with demonstrated estrogen sensitivity were also observed. Affinity labeling with [3H]tamoxifen aziridine identified the Mr 65,000 protein as the estrogen receptor and suggested that the Mr 60,000, 53,000 and 50,000 peptide components were derived proteolytically from this parent unit. The 90,000 mol. wt component was readily dissociated from heparin-sepharose immobilized estrogen receptor by elution with low salt buffers without molybdate. Peptide mapping experiments indicated that the 90,000 mol. wt component was not related to the Mr 65,000 and 50,000 estrogen receptors, but confirmed the smaller binding unit to be a proteolytic fragment of the 65,000 mol. wt receptor. The results suggest that the 90K protein associates non-covalently with the Mr 65,000 estrogen binding unit as a nonhormone binding component of the 9-10S receptor.  相似文献   

11.
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [3H]myristic acid or [3H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.  相似文献   

12.
[3H]Cyclosporin diaziridine, a new photoaffinity label, enters rat liver cells in the dark. Photoaffinity labeling of isolated rat liver-cell plasma membranes with this probe modifies several polypeptides with molecular mass of 200, 85, 54, 50, 34 kDa. The major labeled protein of 85 kDa represents 2% of the total plasma membrane protein. A 50 kDa protein is heavily labeled in freshly isolated rat hepatocytes at low temperature and after short incubation in the dark. The 85 kDa protein becomes substituted after longer preincubation periods at temperatures above 10 degrees C. This suggests a localisation at the cytoplasmic side of the membrane. Several controls point to a specific interaction with the above mentioned proteins. Comparison of [3H]cyclosporin-diaziridine- and isothiocyanatobenzamido[3H] cholic acid-labeled membrane proteins reveals identity of binding proteins with the exception of the 85 kDa protein. However, the interaction of bile acids with the 85 kDa protein became apparent at higher concentrations as demonstrated by the differential photoaffinity labeling experiments. In the cytosol of rat liver cells, further [3H]cyclosporin-diaziridine binding proteins could be identified. In particular, a 17 kDa polypeptide was found which appears similar to cyclophilin, a protein known to be present in T-lymphocytes (R. Handschumacher et al. (1984) Science 226, 544-547: Cyclophilin. A specific cytosolic binding protein for cyclosporin A). Proteins with molecular mass of 90, 56, 30, 24, 20 kDa are labeled in AS-30D ascites hepatoma cells and those with molecular mass of 200, 150, 80, 70, 42, 25 kDa in Ehrlich ascites tumor cells.  相似文献   

13.
The src genes of four Rous sarcoma virus (RSV) mutants temperature-sensitive (ts) for cell transformation were analyzed. The mutant src genes were cloned into a replication-competent RSV expression vector, and the contribution of individual mutations to the ts phenotype was assessed by in vitro recombination with wild-type src sequences. Three of the mutants, which were derived from the Schmidt-Ruppin strain of RSV, each encoded two mutations within the conserved kinase domain. In all three cases, one of the two mutations was an identical valine to methionine change at amino acid position 461. Virus encoding recombinant src genes containing each of these mutations alone were not ts for transformation, demonstrating that two mutations are required for temperature sensitivity. The sequence of the src gene of the Bryan high-titer strain of RSV was determined and compared with that of the fourth ts mutant which was derived from it, again revealing two lesions in the kinase domain of the mutant.  相似文献   

14.
We transfected COS cells with expression vectors for the wild-type G protein alpha i1 subunit (pWT) and for mutated alpha i1 subunits, including the nonmyristylated glycine 2 to alanine mutant (pGA) and mutants in which the carboxyl termini of pWT and pGA were changed from CGLF to CVLS (pCVLS and pGA-CVLS, respectively). Immunoblot analysis of transfected COS cells with an antibody to residues 159-168 of the alpha i1 protein indicated that all four proteins were expressed. Unlike the WT and GA proteins, both CVLS mutant proteins failed to react with an antibody specific for the carboxyl terminus and failed to undergo pertussis toxin-catalyzed ADP-ribosylation. Analysis of COS cell lysates after [3H]mevalonic acid labeling indicated that specific incorporation of radioactivity occurred only in the alpha i1 subunits with the CVLS mutation. Immuno-precipitation of COS cell fractions after labeling with [35S]methionine indicated that both WT and CVLS mutant proteins were localized predominantly in the particulate fraction, whereas GA and GA-CVLS mutant proteins were found primarily in the soluble fraction. These results directly demonstrate that the carboxyl-terminal sequence, CGLF, is incapable of leading to isoprenylation but that alteration of two residues (glycine to valine, phenylalanine to serine) is sufficient to promote isoprenylation.  相似文献   

15.
The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1.5 micromol.kg(-1).min(-1) and then returned to approximately 9 micromol.kg(-1).min(-1), while plasma glucose concentration increased from approximately 4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.  相似文献   

16.
Two iodophenylazide derivatives of reserpine and one iodophenylazide derivative of tetrabenazine have been synthesized and characterized as photoaffinity labels of the vesicle monoamine transporter (VMAT2). These compounds are 18-O-[3-(3'-iodo-4'-azidophenyl)-propionyl]methyl reserpate (AIPPMER), 18-O-[N-(3'-iodo-4'-azidophenethyl)glycyl]methyl reserpate (IAPEGlyMER), and 2-N-[(3'-iodo-4'-azidophenyl)-propionyl]tetrabenazine (TBZ-AIPP). Inhibition of [3H]dopamine uptake into purified chromaffin granule ghosts showed IC50 values of approximately 37 nM for reserpine, 83 nM for AIPPMER, 200 nM for IAPEGlyMER, and 2.1 microM for TBZ-AIPP. Carrier-free radioiodinated [125I]IAPEGlyMER and [125I]TBZ-AIPP were synthesized and used to photoaffinity label chromaffin granule membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed specific [125I]IAPEGlyMER labeling of a polypeptide that migrated as a broad band (approximately 55-90 kDa), with the majority of the label located between 70 and 80 kDa. The labeling by [125I]IAPEGlyMER was blocked by 100 nM reserpine, 10 microM tetrabenazine, 1 mM serotonin, and 10 mM (-)-norepinephrine and dopamine. Analysis of [125I]TBZ-AIPP-labeled chromaffin granule membranes by SDS-PAGE and autoradiography demonstrated specific labeling of a similar polypeptide, which was blocked by 1 microM reserpine and 10 microM tetrabenazine. Incubation of [125I]TBZ-AIPP-photolabeled chromaffin granule membranes in the presence of the glycosidase N-glycanase shifted the apparent molecular weight of VMAT2 to approximately 51 kDa. These data indicate that [125I]IAPEGlyMER and [125I]TBZ-AIPP are effective photoaffinity labels for VMAT2.  相似文献   

17.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

18.
Surface protein antigens of Mycoplasma hyopneumoniae were identified by direct antibody-surface binding or by radioimmunoprecipitation of surface 125I-labeled proteins with a series of monoclonal antibodies (MAbs). Surface proteins p70, p65, p50, and p44 were shown to be integral membrane components by selective partitioning into the hydrophobic phase during Triton X-114 (TX-114)-phase fractionation, whereas p41 was concomitantly identified as a surface protein exclusively partitioning into the aqueous phase. Radioimmunoprecipitation of TX-114-phase proteins from cells labeled with [35S]methionine, 14C-amino acids, or [3H] palmitic acid showed that proteins p65, p50, and p44 were abundant and (with one other hydrophobic protein, p60) were selectively labeled with lipid. Covalent lipid attachment was established by high-performance liquid chromatography identification of [3H]methyl palmitate after acid methanolysis of delipidated proteins. An additional, unidentified methanolysis product suggested conversion of palmitate to another form of lipid also attached to these proteins. Alkaline hydroxylamine treatment of labeled proteins indicated linkage of lipids by amide or stable O-linked ester bonds. Proteins p65, p50, and p44 were highly immunogenic in the natural host as measured by immunoblots of TX-114-phase proteins with antisera from swine inoculated with whole organisms. These proteins were antigenically and structurally unrelated, since hyperimmune mouse antibodies to individual gel-purified proteins were monospecific and gave distinct proteolytic epitope maps. Intraspecies size variants of one surface antigen of M. hyopneumoniae were revealed by a MAb to p70 (defined in strain J, ATCC 25934), which recognized a larger p73 component on strain VPP11 (ATCC 25617). In addition, MAb to internal, aqueous-phase protein p82 of strain J failed to bind an analogous antigen in strain VPP11. These studies establish that a highly restricted set of distinct, lipid-modified hydrophobic membrane proteins are major surface antigens of M. hyopneumoniae and that structural variants of surface antigens occur within this species.  相似文献   

19.
Herpes simplex virus genes form several groups whose expression is coordinately regulated and sequentially ordered in a cascade fashion. Most of the products of the first group, the alpha genes, appear to have regulatory functions. We report that the alpha proteins, infected cell proteins 4, 0, 22, and 27 of herpes simplex virus 1 and 4, 0, and 27 of herpes simplex virus 2, were labeled in the isolated nuclei of infected HeLa cells with [alpha-32P]GTP or [alpha-32P]ATP late in infection and that these proteins represent the largest group of virus-specific proteins labeled in this fashion. Studies with [2-3H]ATP, in which the label is in the purine ring, showed that a portion of the label in alpha proteins and in at least one other infected cell protein is due to nucleotidylylation. Analyses of the labeling reactions in nuclei of (i) cells infected with temperature-sensitive mutants at nonpermissive temperatures, (ii) cells infected with wild-type virus and harvested at different times postinfection, and (iii) cells treated with inhibitors of protein synthesis or of synthesis of viral DNA led to the conclusion that viral gene functions expressed after the synthesis of alpha proteins are required for the labeling of the alpha proteins with [alpha-32P]GTP. We conclude that several of the alpha proteins are extensively posttranslationally modified and that these modifications include nucleotidylylation.  相似文献   

20.
Hepatitis A virus (HAV) contains a single-stranded, plus-sense RNA genome with a single long open reading frame encoding a polyprotein of approximately 250 kDa. Viral structural proteins are generated by posttranslational proteolytic processing of this polyprotein. We constructed recombinant vaccinia viruses which expressed the HAV polyprotein (rV-ORF) and the P1 structural region (rV-P1). rV-ORF-infected cell lysates demonstrated that the polyprotein was cleaved into immunoreactive 29- and 33-kDa proteins which comigrated with HAV capsid proteins VP0 and VP1. The rV-P1 construct produced a 90-kDa protein which showed no evidence of posttranslational processing. Solid-phase radioimmunoassays with human polyclonal anti-HAV sera and with murine or human neutralizing monoclonal anti-HAV antibodies recognized the rV-ORF-infected cell lysates. Sucrose density gradients of rV-ORF-infected cell lysates contained peaks of HAV antigen with sedimentation coefficients of approximately 70S and 15S, similar to those of HAV empty capsids and pentamers. Immune electron microscopy also demonstrated the presence of viruslike particles in rV-ORF-infected cell lysates. Thus, the HAV polyprotein expressed by a recombinant vaccinia virus demonstrated posttranslational processing into mature capsid proteins which assembled into antigenic viruslike particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号