首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.  相似文献   

2.
Investigations of the growth of anthers and ontogeny of pollen grains of Oryza sativa (rice) IR-30 were undertaken for the purpose of 1) providing a set of growth measurements and 2) describing stable cytological features of anther and pollen development. Correlations exist between elongation of the floret and growth parameters of the anther such as its length, width, fresh and dry weights and cytological stage of pollen development. In the early ontogeny of the anther, hypodermal archesporial initials divide periclinally to form primary parietal cells and primary sporogenous cells. Each of the latter divides twice mitotically to generate four microspore mother cells, which undergo meiosis. The anther wall is formed by anticlinal and periclinal divisions of the primary parietal cells as well as of cells surrounding the primary sporogenous cells. Subsequent cytological features in the development of anther and pollen grains of rice have much in common with anther and pollen developmental biology of other members of Gramineae.  相似文献   

3.
In normal anther development in maize (Zea mays L), large hypodermal cells in anther primordia undergo a series of proscribed cell divisions to form an anther containing microsporogenous cells and three distinctive anther wall layers: the tapetum, the middle layer and the endothecium. In homozygous msca1 mutants of maize, stamen primordia are initiated normally and large hypodermal cells can be detected in developing anthers. However, the normal series of cell division and differentiation events does not occur in msca1 mutant plants. Rather, structures containing parenchymal cells and ectopic, nonfunctional vascular strands are formed. The epidermal surfaces of these structures contain stomata, which are normally absent in maize anthers. Thus, all of the cell layers of the "anther" have been transformed in mutant plants. The filaments of the mutant structures are normal, and all other flower parts are normal. The msca1 mutation does not affect female fertility, but transformed "stamen" structures remain associated with mature ovules rather than aborting as in normal ear development. The msca1 mutation is distinctive in that only one part of a single (male) reproductive organ is transformed. The resulting structure has general vegetative features, but cannot be conclusively identified as a particular vegetative organ.  相似文献   

4.
5.
利用常规石蜡制片技术、荧光显微技术、光镜细胞化学技术、电子显微镜技术对青阳参小孢子发生和雄配子体发育进行了详细观察。结果显示,小孢子孢原细胞起源于皮下组织并在两个地方分化;孢原细胞平周分裂形成初生壁层和初生造孢层,初生壁层细胞再经过平周分裂形成2层细胞,其中最内一层即为绒毡层,绒毡层为分泌型绒毡层,既为小孢子发育提供营养来源,又分泌分泌物形成包围花粉粒的膜;初生造孢层细胞直接行使小孢子母细胞的功能;成熟花粉粒中含有大量淀粉粒、蛋白质、内质网、叶绿体、脂体和大液泡;包围花粉粒的膜和花粉粒之间的膜含有蛋白质成分和脂类成分;小孢子细胞核分裂形成营养细胞和生殖细胞,营养细胞和生殖细胞间没有细胞板形成,生殖细胞呈透镜型、比营养细胞小。  相似文献   

6.
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.  相似文献   

7.
In this study anther ontogeny of Campsis radicans (L.) Seem. was investigated by transmission electron microscopy and light microscopy with special reference to the development of the anther wall. The anther wall formation follows the dicotyledonous type. The differentiation in anther starts with the appearance of archesporial cells which undergo periclinal divisions to give primary parietal layer to the epidermal site and the primary sporogenous cells to the inside. The primary parietal layer also divides to form two secondary parietal layers. Later, the outer secondary parietal layer (spl1) forms the endothecium and the middle layer by periclinal division whereas the inner one (spl2) directly develops into the outer tapetum forming the inner most layer of the anther wall. The sporogenous tissue is generally organized in two rows of cells with a horseshoe-shaped outline. The remainder of the tapetum lining the sporogenous mass is derived from the connective tissue. The tapetum thus has dual origin and dimorphic. Anthers are tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer, and the secretory type tapetum. Tapetal cells are usually binucleated. Epidermis and Endothecium layers of anther wall remain intact until the end of anther and pollen development; however, middle layer and tapetum disappear during development.  相似文献   

8.
A developmental study of anther tapetum in Tecoma stans has shown that the hypodermal archesporial layer differentiates in each microsporangium by cutting off a primary parietal layer to the outside (epidermal) and a primary sporogenous layer to the inside (connective). The primary parietal layer divides periclinally, producing the outer secondary parietal layer, which by further divisions, forms the future endothecium and the middle layer. On epidermal side, the inner secondary parietal layer gives rise to tapetum. The remainder of the tapetum on the inside (connective) is contributed by the parenchymatous connective cells lying just outside the sporogenous cells. The tapetum thus follows the dicotyledonous type of ontogeny. It also shows a distinct dual origin and is structurally dimorphic.  相似文献   

9.
利用石蜡切片技术,对百合科植物开口箭(Tupistra chinensis Baker)大小孢子发生及雌雄配子体发育进程进行胚胎学观察分析,以明确开口箭胚胎发育的特征,为百合科植物的研究提供生殖生物学依据。结果表明:(1)开口箭花药具有4个药室,花药壁的发育方式为基本型,由表皮、药室内壁、中层及绒毡层组成;绒毡层发育类型为分泌型,到四分体花药阶段绒毡层细胞开始解体退化,花药成熟时完全消失。(2)花粉母细胞减数分裂为连续型,依次形成二分体、四分体,四分体为左右对称形;成熟花粉为2-细胞花粉,具单萌发沟。(3)子房3室,倒生型胚珠6枚,双珠被,薄珠心;在花部的分化早期,由珠心顶端表皮下方分化出雌性孢原细胞,孢原细胞经过一次平周分裂形成周缘细胞和造孢细胞,造孢细胞发育为大孢子母细胞;大孢子母细胞第一次减数分裂后形成二分体,珠孔端的二分体孢子退化,合点端的二分体孢子继续第二次分裂,形成两个子细胞依次发育为二核胚囊、四核胚囊和八核胚囊;开口箭的胚囊发育类型为葱型。  相似文献   

10.
The histochemical localization of ascorbic acid and RNA was studied during developmental stages ofDatura anthers. The concentration of ascorbic acid and RNA was high in primary parietal and primary sporogenous layers, sporogenous cells and pollen grains. The connective of young anther showed remarkably high concentration of ascorbic acid. The high peaks of ascorbic acid and RNA concentration correlated with the growth phases of anther. The connective and anther wall layers act as reservoirs of energy needed for developing sporogenous cells.  相似文献   

11.
12.
凤仙花花药发育比较特殊: 在造孢细胞时期,花药横切面中央是体积较大、细胞内含物较多的细胞团、包括造孢细胞和绒毡层细胞。花药药壁细胞的细胞质较稀少,与中部细胞界限明晰。花粉母细胞时期的花药药壁由约6层细胞组成,但细胞的界限不明显;绒毡层细胞显示变形流入药室中。到四分体时期,绒毡层细胞进一步退化。开花时,成熟花药的药壁细胞由一层表皮细胞、两层药室内壁细胞和一层中层细胞组成。对凤仙花花药绒毡层的特殊性质进行了讨论。  相似文献   

13.
Few Arabidopsis mutants defective in early male or female germline development have been reported. A novel extinction screen has been devised which permits the identification of mutants deficient in the earliest stages of anther development. Using mutagenized plants carrying GUS reporter constructs driven by tapetal-specific promoters originally derived from Brassica genes, a wide spectrum of mutants have been identified in Arabidopsis, ranging from those defective in archesporial cell differentiation to others expressed later in development. Crosses between these lines and known anther development mutants have enabled the identification of lines carrying mutations in genes expressed during very early anther formation. Initial characterization reveals these early mutants fall into two classes, gne (GUS-negative) 1-like, and gne2-like. Members of the gne1 mutant class initiate all four layers of the anther wall and an appropriate number of sporogenous cells; however, as development proceeds the tapetal and middle-layer cells enlarge, eventually crushing the sporogenous cells. The gne2 class anthers are disrupted at an earlier stage, with the middle and tapetal layers failing to form, and an excess of sporogenous cells developing until the germline aborts late in meiosis II. Analysis of these mutants has already raised questions about the accuracy of current models of angiosperm anther development.  相似文献   

14.
15.
We compared anther development in 13 genera and 15 species of Annonaceae to document the nature and development of anther septa. In aseptate anthers, all sporogenous initials proceed to sporogenesis and meiosis. In septate anthers, a small number of sporogenous initials, in a discontinuous distribution pattern, differentiate into sporogenous cells; the remaining initials become sterile and form cellular septa that partition each anther lobe into multiple sporangial chambers. In species where the septum is 1-2 cell layers thick, the entire septum becomes tapetal (T-type septa) and breaks down before anther dehiscence. In species in which the septum is three or more cell layers thick, only the layer in direct contact with the sporogenous cells becomes tapetal, and the remaining cells become parenchymatous (P-type septa). These thicker P-type septa are sometimes visible in dehisced anthers. Both types are homologous in ontogeny and are highly associated with the production of compound pollen. We propose that the evolution of anther septation in Annonaceae was mainly driven by the requirement for highly efficient nutrient and physical support to the development of large, compound pollen units.  相似文献   

16.
A modification characterizing all cleistogamous species is reduction in anther size of the CL (cleistogamous or closed) flower. In Collomia grandiflora the CL anther, in addition to being smaller, has only two locules; the CH (chasmogamous or open) flower anther has four locules. As a consequence, there is a modification in CL anther shape. From initially similar primordia, a divergence in histology between the two anther forms appears at archesporial cell differentiation when only two locules are established in the CL anther. The process of form divergence in the two anther types is examined in this study using histological, allometric, and 3-D computer graphic techniques. Allometric data from SEM images demonstrates the equivalence of primordial shapes at anther inception and divergence just prior to archesporial cell division, which signals the onset of sporogenous cell proliferation. Reconstructions of the anthers at archesporial cell division stage revealed differences in external and internal form and size, features unrelated to locule number. Fewer initial archesporial cells and a shorter duration of sporogenous cell proliferation in the CL anther correlates with a smaller anther with 1/10th the number of pollen grains at maturity. The CL anther shows less cell division activity from the time of archesporial cell division and no trace of the intercalary growth which appears during meiosis in the CH anther. The divergent CL anther size and form may be attributed to an earlier onset of abaxial locule differentiation in a smaller primordium which may itself preclude adaxial locule initiation. Heterochrony, or alteration in developmental timing, is proposed as the mode of evolution of the CL from the ancestral CH form.  相似文献   

17.
The tobacco stamen has been the object of many developmental studies, and the organ has more recently become a model for molecular genetic studies of anther differentiation. However, the spatial and temporal details of cellular differentiation of early anther development have never been thoroughly characterized. In the present study, the age of 15 tobacco flowers from plants grown under constant light and temperature was estimated using growth analysis. Prior to tissue fixation for light microscopy, moulds of stamen and anther primordia were made with a dental impression polymer so morphological and histological observations could be made on each tissue sample. Flower ages spanned an 8-d interval during which petal and stamen initiation occurred, and sporogenous cells reached the leptonema stage of meiosis. The initial development of the tetrasporangiate anther shape largely preceded periclinal division of archesporial initials. Anatomically, periclinal divisions in the hypodermal ∗∗∗(l2) layer were observed before archesporial initials began to divide. These data indicate differences in the cellular basis of tobacco anther development compared to earlier clonal analyses of Datura. The pattern of mitotic cell division associated with microsporangial development suggested modal peaks in division over time. The ability to estimate developmental time in the tobacco anther has implications for future studies directed at understanding mechanisms of anther evolution via heterochrony.  相似文献   

18.

Key message

Cellulose-specific staining revealed that tapetal cells and microsporocytes lose cellulosic walls before the onset of meiosis. Cellulosic wall degradation in microsporocytes might be independent of tapetal cells (or TPD1).

Abstract

Some cell types in a variety of angiosperms have been reported to lack cell walls. Here, we report that the tapetal cells of the anther of Arabidopsis thaliana did not appear to have a cellulosic wall based on staining with Calcofluor and Renaissance 2200. During sporogenous cell formation, cellulosic wall was present in all anther tissues. However, before meiosis it was almost absent on the tapetal cells and on the microsporocytes. In a sporocyteless/nozzle (spl/nzz) mutant, which lacks several components (microsporocytes, tapetum, middle layer and endothecium), cellulosic wall was detected in all anther cells. In another mutant, tapetum determinant1 (tpd1), which lacks tapetum and has more microsporocytes, cellulosic wall was almost absent on the microsporocytes before meiosis, similar to the wild type. These results suggest that the tapetum cells and microsporocytes lose cellulosic walls during microsporocyte formation, and that cell wall degradation occurs downstream of SPL/NZZ and is independent of TPD1.  相似文献   

19.
In flowering plants, the anther contains highly specialized reproductive and somatic cells that are required for male fertility. Genetic studies have uncovered several genes that are important for anther development. However, little information is available regarding most genes active during anther development, including possible relationships between these genes and genetically defined regulators. In Arabidopsis, two previously isolated male-sterile mutants display dramatically altered anther cell differentiation patterns. The sporocyteless (spl)/nozzle (nzz) mutant is defective in the differentiation of primary sporogenous cells into microsporocytes, and does not properly form the anther wall. The excess microsporocytes1 (ems1)/extrasporogenous cells (exs) mutants produce excess microsporocytes at the expense of the tapetum. To gain additional insights into microsporocyte and tapetum differentiation and to uncover potential genetic interactions, expression profiles were compared between wild-type anthers (stage 4-6) and those of the spl or ems1 mutants. A total of 1954 genes were found to be differentially expressed in the ems1 and/or spl anthers, and these were grouped into 14 co-expression clusters. The presence of genes with known and predicted functions in specific clusters suggests potential functions for other genes in the same cluster. To obtain clues about possible co-regulation within co-expression clusters, we searched for shared cis-regulatory motifs in putative promoter regions. Our analyses were combined with data from previous studies to develop a model of the anther gene regulatory network. This model includes hypotheses that can be tested experimentally to gain further understanding of the mechanisms controlling anther development.  相似文献   

20.
柽柳大、小孢子发生和雌、雄配子体发育的观察   总被引:8,自引:2,他引:6  
利用常规石蜡制片技术,对柽柳(Tamarix chinensis Lour.)的大、小孢子发生及雌、雄配子体发育过程进行了观察。主要结果如下:(1)花药壁由五层细胞组成,从外向内分别为表皮、药室内壁,两层中层和绒毡层。药壁的发育属于基本型。绒毡层为分泌型。(2)孢原细胞为多孢原起源。小孢子母细胞减数分裂过程中的胞质分裂为连续型,形成的四分孢子为四面体型;同一药室的小孢子母细胞减数分裂几乎完全同步。(3)成熟花粉粒为2细胞型,具3个萌发孔。(4)柽柳为三心皮构成的单室复子房,每子房具有10~20个胚珠,基底胎座,胚珠为双珠被、厚珠心、倒生型。大孢子母细胞减数分裂形成1+3排列的4个大孢子, 4个大孢子全部参与胚囊的形成。(5)胚囊发育为贝母型,反足细胞在胚囊成熟时充分发育。(6)同一朵花中,前期雄蕊的发育早于雌蕊的发育,后期当花粉成熟时,雌配子体也达到成熟,雌雄蕊发育趋于同步。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号