首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.  相似文献   

2.
3.
Rossi V  Varotto S 《Planta》2002,215(3):345-356
The G1/S transition generally represents the principal point of commitment to cell division. Many of the components of the cell cycle core machinery regulating the G1/S transition in plants have been recently identified. Although plant regulators of the G1/S transition display structural and biochemical homologies with their animal counterparts, their functions in integrating environmental stimuli and the developmental program within cell cycle progression are often plant-specific. In this review, recent progress in understanding the role of plant G1/S transition regulators is presented. Emerging evidence concerning the mechanisms of G1/S control in response to factors triggering the cell cycle and the integration of these mechanisms with plant development is also discussed.  相似文献   

4.
5.
6.
Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highlyordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators or accelerators that induce cell cycle progression; whereas, cyclindependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression or activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how new cancer treatment strategies can be designed.  相似文献   

7.
Dysregulation of cell cycle machinery causes abnormal cell division, leading to cancer development. To drive cell cycle properly, expression levels of cell cycle regulators are tightly regulated through the cell cycle. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a Ser/Thr kinase, and its intracellular functions had not been elucidated for decades. Recent studies have shown that DYRK2 down-regulates key molecules on cell cycle control. This review mainly highlights the DYRK2 function during cell division. In addition, we summarize tumor suppressive role of DYRK2 in cancer cells and discuss future research directions for DYRK2 toward the novel cancer therapies.  相似文献   

8.
9.
10.
11.
12.
13.
Regulation of cell cycle duration is critical during development, yet the underlying molecular mechanisms are still poorly understood. The two-cell stage Caenorhabditis elegans embryo divides asynchronously and thus provides a powerful context in which to study regulation of cell cycle timing during development. Using genetic analysis and high-resolution imaging, we found that deoxyribonucleic acid (DNA) replication is asymmetrically regulated in the two-cell stage embryo and that the PAR-4 and PAR-1 polarity proteins dampen DNA replication dynamics specifically in the posterior blastomere, independently of regulators previously implicated in the control of cell cycle timing. Our results demonstrate that accurate control of DNA replication is crucial during C. elegans early embryonic development and further provide a novel mechanism by which PAR proteins control cell cycle progression during asynchronous cell division.  相似文献   

14.
The core mechanism of the plant cell cycle is conserved with all other eukaryotes but several aspects are unique to plant cells. Key characteristics of plant development include indeterminate growth and repetitive organogenesis derived from stem cell pools and they may explain the existence of the high number of cell cycle regulators in plants. In this review, we give an overview of the plant cell cycle and its regulatory components. Furthermore, we discuss the cell cycle aspects of plant stem cell maintenance and how the cell cycle relates to cellular differentiation during development. We exemplify this transition by focusing on organ initiation in the shoot.  相似文献   

15.
Cell cycle regulation during mouse olfactory neurogenesis.   总被引:4,自引:0,他引:4  
The development of the nervous system requires a strict control of cell cycle entry and withdrawal. The olfactory epithelium (OE) is noticeable by its ability to yield new neurons not only during development but also continuously during adulthood. The aim of our study was to investigate, by biochemical and immunohistochemical methods, which cell cycle regulators are involved in the control of neuron production during OE development and maturity. At birth, olfactory neural progenitors, the basal cells, exhibited a high mitogenic and neurogenic activity, decreasing in the following weeks together with the drop in expression of several cell cycle regulators. p27Kip1 and p18Ink4c, at birth, were expressed in the whole basal cell layer, whereas p16Ink4a, p19Ink4d, and p21Cip1 were rather located in differentiating or mature neurons. CDK inhibitors may thus act sequentially during this developmental neurogenic process. By comparison, in the adult OE, in which most neural precursors were quiescent, these cells still exhibited p18Ink4c expression but only occasionally p27Kip1 expression. It suggests that p18Ink4c may contribute to maintain basal cells in a quiescent state, whereas p27Kip1 expression in these cells may be rather linked to their neurogenic activity, which declines with age. In keeping with this hypothesis, transgenic mice that lacked p27Kip1 expression displayed a higher rate of cell proliferation versus differentiation in their OE. In these mice, a down-regulation of positive cell cycle regulators was observed that may contribute to compensate for the absence of p27Kip1. Taken together, the present data suggest distinct functions for CDK inhibitors, either in the control of cell cycle exit and differentiation during neurogenesis (respectively, p27Kip1 and p19Ink4d) or in the maintenance of a quiescent state in neural progenitors (p18Ink4c) or neurons (p21Cip1) in adults.  相似文献   

16.
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.  相似文献   

17.
18.
The molecular mechanisms regulating cell proliferation and development during the life cycle of malaria parasites remain to be elucidated. The peculiarities of the cell cycle organization during Plasmodium falciparum schizogony suggest that the modalities of cell cycle control in this organism may differ from those in other eukaryotes. Indeed, existing data concerning Plasmodium cell cycle regulators such as cyclin-dependent kinases reveal structural and functional properties that are divergent from those of their homologues in other systems. The work presented here lies in the context of the exploitation of the recently available P. falciparum genome sequence toward the characterization of putative cell cycle regulators. We describe the in silico identification of three open reading frames encoding proteins with maximal homology to various members of the cyclin family and demonstrate that the corresponding polypeptides are expressed in the erythrocytic stages of the infection. We present evidence that these proteins possess cyclin activity by demonstrating either their association with histone H1 kinase activity in parasite extracts or their ability to activate PfPK5, a P. falciparum cyclin-dependent kinase homologue, in vitro. Furthermore, we show that RINGO, a protein with no sequence homology to cyclins but that is nevertheless a strong activator of mammalian CDK1/2, is also a strong activator of PfPK5 in vitro. This raises the possibility that "cryptic" cell cycle regulators may be found among the 50% of the open reading frames in the P. falciparum genome that display no homology to any known proteins.  相似文献   

19.
Autophagic programmed cell death in Drosophila   总被引:5,自引:0,他引:5  
  相似文献   

20.
Green light for the cell cycle   总被引:21,自引:0,他引:21  
Inzé D 《The EMBO journal》2005,24(4):657-662
In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号