首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Some hexavalent chromium (Cr(VI))-containing compounds are human lung carcinogens. While ample information is available on the genetic lesions produced by Cr, surprisingly little is known regarding the cellular mechanisms involved in the removal of Cr-DNA adducts. Nucleotide excision repair (NER) is a highly versatile pathway that is responsive to a variety of DNA helix-distorting lesions. Binary Cr-DNA monoadducts do not produce a significant degree of helical distortion. However, these lesions are unstable due to the propensity of Cr(III) to form DNA adducts (DNA interstrand crosslinks, DNA-protein/amino acid ternary adducts) which may serve as substrates for NER. Therefore, the focus of this study was to determine the role of NER in the processing of Cr-DNA damage using normal (CHO-AA8) and NER-deficient [UV-5 (XP-D); UV-41 (ERCC4/XP-F)] hamster cells. We found that both UV-5 and UV-41 cells exhibited an increased sensitivity towards Cr(VI)-induced clonogenic lethality relative to AA8 cells and were completely deficient in the removal of Cr-DNA adducts. In contrast, repair-complemented UV-5 (expressing hamster XPD) and UV-41 (expressing human ERCC4) cells exhibited similar clonogenic survival and removed Cr-DNA adducts to a similar extent as AA8 cells. In order to extend these findings to the molecular level, we examined the ability of Cr(III)-damaged DNA to induce DNA repair synthesis in cell extracts. Repair synthesis was observed in reactions using extracts derived from AA8, or repair-complemented, but not NER-deficient cells. Cr(III)-induced repair resynthesis was sensitive to inhibition by the DNA polymerase δ/ε inhibitor, aphidicolin, but not 2′,3′-dideoxythymidine triphosphate (ddTTP), a polymerase β inhibitor. These results collectively suggest that NER functions in the protection of cells from Cr(VI) lethality and is essential for the removal of Cr(III)-DNA adducts. Consequently, NER may represent an important mechanism for preventing Cr(VI)-induced mutagenesis and neoplastic transformation.  相似文献   

3.
Nucleotide excision repair in chromatin and the right of entry   总被引:3,自引:0,他引:3  
Gong F  Kwon Y  Smerdon MJ 《DNA Repair》2005,4(8):884-896
  相似文献   

4.
Nucleotide excision repair in chromatin: the shape of things to come   总被引:3,自引:0,他引:3  
Reed SH 《DNA Repair》2005,4(8):909-918
Much of our mechanistic understanding of nucleotide excision repair (NER) has been derived from biochemical studies that have analysed the reaction as it occurs on DNA substrates that are not representative of DNA as it exists in the living cell. These studies have been extremely useful in deciphering the core mechanism of the NER reaction, but efforts to understand how NER operates in chromatin have been hampered in part because assembling DNA into nucleosomes, the first level of chromatin compaction, is inhibitory to NER in vitro. However, recent research using biochemical, genetic and cell-based studies is now providing us with the first insights into the molecular mechanism of NER as it occurs in the cellular context. A number of recent studies have provided glimpses of a chromatin--NER connection. Here I review this literature and evaluate how it might aid our understanding, and shape our future research into NER.  相似文献   

5.
Nucleotide excision repair is one of the most important pathways of DNA repair in eukaryotic cells. Defects of this system lead to serious diseases including certain kinds of cancer. Nucleotide excision repair is able to remove a wide range of the structurally diverse DNA damages such as UV induced pyrimidine dimers, bulky chemical adducts arising under the action of carcinogenic compounds or chemotherapeutical drugs on cellular DNA. A broad substrate specificity of this repair pathway is related to the main intriguing question that is the mechanism of damage recognition by the protein complex in the context of the large excess of undamaged DNA. This review is detailed on the key stage of nucleotide excision repair--the recognition of a lesion in DNA, which is still most debated. We have considered the main models of a primary damage recognition and preincision complex formation that have been suggested by the leading groups in this field. Data presented allow to suggest the model of sequential loading of the proteins of reparative complex on damage DNA as the most reasonable.  相似文献   

6.
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.  相似文献   

7.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

8.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

9.
10.
Nucleotide excision repair in yeast   总被引:22,自引:0,他引:22  
  相似文献   

11.
12.
13.
14.
Nucleotide excision repair in Escherichia coli.   总被引:43,自引:0,他引:43       下载免费PDF全文
  相似文献   

15.
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.  相似文献   

16.
DNA labeled for 15 minutes during UV induced repair synthesis is two-fold more sensitive to micrococcal nuclease than the bulk nuclear DNA. As the length of the labeling period increases from 15 minutes to 4 hours the nuclease sensitivity of repair labeled DNA approaches that of bulk chromatin. Pulse-chase experiments indicate that the nuclease sensitivity of the repaired DNA labeled during a brief pulse decreases with a half-life of about 15 minutes. In contrast to previous interpretations, we consider these results to mean that immediately after synthesis, chromatin labeled during repair has a conformation which renders it more susceptible to nuclease digestion than the bulk chromatin. With time these repaired regions are assembled into a nucleosome structure with normal nuclease sensitivity.  相似文献   

17.
We have determined and compared nucleotide excision repair capability of several rat tissues by a method based on restoration of the transformation activity of UV-irradiated pBlueScript by incubation in repair-competent protein extracts. After 3 h of incubation, plasmid DNA was isolated and used to transform competent Escherichia coli cells. Damaged plasmids showed low transformation efficiency prior to incubation in repair-competent extracts. After incubation the transformation efficiency was restored to different extents permitting calculation of the repair capacity of the extracts. Our results showed that rapidly proliferating tissues such as liver, kidney and testis showed higher nucleotide excision repair capacity than slowly proliferating tissues such as heart, muscle, lung and spleen. When liver and splenocytes were stimulated to proliferation by partial hepatectomy and mitogen stimulation, their repair capability increased in parallel with the respective proliferative rates.  相似文献   

18.
Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions flanking the lesion are catalyzed by different structure-specific endonucleases. The 5' incision is made by a heterodimer of XPF and ERCC1 (Rad1p-Rad10p in Saccharomyces cerevisiae), and the 3' incision is made by XPG (Rad2p in S. cerevisiae). We previously showed that the Drosophila XPF homologue is encoded by the meiotic recombination gene mei-9. We report here the identification of the genes encoding the XPG and ERCC1 homologues (XPG(Dm) and ERCC1(Dm)). XPG(Dm) is encoded by the mus201 gene; we found frameshift mutations predicted to produce truncated XPG(Dm) proteins in each of two mus201 alleles. These mutations cause defects in nucleotide excision repair and hypersensitivity to alkylating agents and ultraviolet light, but do not cause hypersensitivity to ionizing radiation and do not impair viability or fertility. ERCC1(Dm) interacts strongly in a yeast two-hybrid assay with MEI-9, indicative of the presumed requirement for these polypeptides to dimerize to form the functional endonuclease. The Drosophila Ercc1 gene maps to polytene region 51D1-2. The nucleotide excision repair gene mus210 maps nearby (51E-F) but is distinct from Ercc1.  相似文献   

19.
The process of base excision repair has been completely reconstituted in vitro and structural and biochemical properties of the component enzymes thoroughly studied on naked DNA templates. More recent work in this field aims to understand how BER operates on the natural substrate, chromatin [1], [2]. Toward this end, a number of researchers, including the Smerdon group, have focused attention to understand how individual enzymes and reconstituted BER operate on nucleosome substrates. While nucleosomes were once thought to completely restrict access of DNA-dependent factors, the surprising finding from these studies suggests that at least some BER components can utilize target DNA bound within nucleosomes as substrates for their enzymatic processes. This data correlates well with both structural studies of these enzymes and our developing understanding of nucleosome conformation and dynamics. While more needs to be learned, these studies highlight the utility of reconstituted BER and chromatin systems to inform our understanding of in vivo biological processes.  相似文献   

20.
Friedberg EC 《DNA Repair》2011,10(7):668-672
This article, taken largely from the book Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms, summarizes the very early history of the discovery of nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号