首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological membranes contain a substantial amount of "nonbilayer lipids", which have a tendency to form nonlamellar phases. In this study the hypothesis was tested that the presence of nonbilayer lipids in a membrane, due to their overall small headgroup, results in a lower packing density in the headgroup region, which might facilitate the interfacial insertion of proteins. Using the catalytic domain of leader peptidase (delta2-75) from Escherichia coli as a model protein, we studied the lipid class dependence of its insertion and binding. In both lipid monolayers and vesicles, the membrane binding of (catalytically active) delta2-75 was much higher for the nonbilayer lipid DOPE compared to the bilayer lipid DOPC. For the nonbilayer lipids DOG and MGDG a similar effect was observed as for DOPE, strongly suggesting that no specific interactions are involved but that the small headgroups create hydrophobic interfacial insertion sites. On the basis of the results of the monolayer experiments, calculations were performed to estimate the space between the lipid headgroups accessible to the protein. We estimate a maximal size of the insertion sites of 15 +/- 7 A2/lipid molecule for DOPE, relative to DOPC. The size of the insertion sites decreases with an increase in headgroup size. These results show that nonbilayer lipids stimulate the membrane insertion of delta2-75 and support the idea that such lipids create insertion sites by reducing the packing density at the membrane-water interface. It is suggested that PE in the bacterial membrane facilitates membrane insertion of the catalytic domain of leader peptidase, allowing the protein to reach the cleavage site in preproteins.  相似文献   

2.
Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.  相似文献   

3.
M E Haque  A J McCoy  J Glenn  J Lee  B R Lentz 《Biochemistry》2001,40(47):14243-14251
The effects of hemagglutinin (HA) fusion peptide (X-31) on poly(ethylene glycol)- (PEG-) mediated vesicle fusion in three different vesicle systems have been compared: dioleoylphosphatidylcholine (DOPC) small unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) and palmitoyloleoylphosphatidylcholine (POPC) large unilamellar perturbed vesicles (pert. LUV). POPC LUVs were asymmetrically perturbed by hydrolyzing 2.5% of the outer leaflet lipid with phospholipase A(2) and removing hydrolysis products with BSA. The mixing of vesicle contents showed that these perturbed vesicles fused in the presence of PEG as did DOPC SUV, but unperturbed LUV did not. Fusion peptide had different effects on the fusion of these different types of vesicles: fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. Fusion was enhanced in DOPC SUV at low peptide surface occupancy but hindered at high surface occupancy. Finally, fusion was hindered in proportion to peptide concentration in perturbed POPC LUV. Contents leakage assays demonstrated that the peptide enhanced leakage in all vesicles. The peptide enhanced lipid transfer between both fusogenic and nonfusogenic vesicles. Peptide binding was detected in terms of enhanced tryptophan fluorescence or through transfer of tryptophan excited-state energy to membrane-bound diphenylhexatriene (DPH). The peptide had a higher affinity for vesicles with packing defects (SUV and perturbed LUV). Quasi-elastic light scattering (QELS) indicated that the peptide caused vesicles to aggregate. We conclude that binding of the fusion peptide to vesicle membranes has a significant effect on membrane properties but does not induce fusion. Indeed, the fusion peptide inhibited fusion of perturbed LUV. It can, however, enhance fusion between highly curved membranes that normally fuse when brought into close contact by PEG.  相似文献   

4.
Protein domains shallowly inserting into the membrane matrix are ubiquitous in peripheral membrane proteins involved in various processes of intracellular membrane shaping and remodeling. It has been suggested that these domains sense membrane curvature through their preferable binding to strongly curved membranes, the binding mechanism being mediated by lipid packing defects. Here we make an alternative statement that shallow protein insertions are universal sensors of the intra-membrane stresses existing in the region of the insertion embedding rather than sensors of the curvature per se. We substantiate this proposal computationally by considering different independent ways of the membrane stress generation among which some include changes of the membrane curvature whereas others do not alter the membrane shape. Our computations show that the membrane-binding coefficient of shallow protein insertions is determined by the resultant stress independently of the way this stress has been produced. By contrast, consideration of the correlation between the insertion binding and the membrane curvature demonstrates that the binding coefficient either increases or decreases with curvature depending on the factors leading to the curvature generation. To validate our computational model, we treat quantitatively the experimental results on membrane binding by ALPS1 and ALPS2 motifs of ArfGAP1.  相似文献   

5.
Mesmin B  Drin G  Levi S  Rawet M  Cassel D  Bigay J  Antonny B 《Biochemistry》2007,46(7):1779-1790
ArfGAP1 (Arf GTPase activating protein 1) controls the cycling of the COPI coat on Golgi membranes by catalyzing GTP hydrolysis in the small G protein Arf1. ArfGAP1 contains a central motif named ALPS (ArfGAP1 lipid-packing sensor) that adsorbs preferentially onto highly curved membranes. This motif allows coupling of the rate of GTP hydrolysis in Arf1 with membrane curvature induced by the COPI coat. Upon membrane adsorption, the ALPS motif folds into an amphipathic alpha-helix. This helix contrasts from a classical membrane-adsorbing helix in the abundance of S and T residues and the paucity of charged residues in its polar face. We show here that ArfGAP1 contains a second motif with similar physicochemical properties. This motif, ALPS2, also forms an amphipathic alpha-helix at the surface of small vesicles and contributes to the Golgi localization of ArfGAP1 in vivo. Using several quantitative assays, we determined the relative contribution of the two ALPS motifs in the recognition of liposomes of defined curvature and composition. Our results show that ALPS1 is the primary determinant of the interaction of ArfGAP1 with lipid membranes and that ALPS2 reinforces this interaction 40-fold. Furthermore, our results suggest that depending on the engagement of one or two functional ALPS motifs, ArfGAP1 can respond to a wide range of membrane curvature and can adapt to lipid membranes of various acyl chain compositions.  相似文献   

6.
Rod outer segment disk membranes are densely packed with rhodopsin. The recent notion of raft or microdomain structures in disk membranes suggests that the local density of rhodopsin in disk membranes could be much higher than the average density corresponding to the lipid/protein ratio. Little is known about the effect of high packing density of rhodopsin on the structure and function of rhodopsin and lipid membranes. Here we examined the role of rhodopsin packing density on membrane dynamic properties, membrane acyl chain packing, and the structural stability and function of rhodopsin using a combination of biophysical and biochemical techniques. We reconstituted rhodopsin into large unilamellar vesicles consisting of polyunsaturated 18:0,22:6n3PC, which approximates the polyunsaturated nature of phospholipids in disk membranes, with rhodopsin/lipid ratios ranging from 1:422 to 1:40. Our results showed that increased rhodopsin packing density led to reduced membrane dynamics revealed by the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene, increased phospholipid acyl chain packing, and reduced rhodopsin activation, yet it had minimal impact on the structural stability of rhodopsin. These observations imply that densely packed rhodopsin may impede the diffusion and conformational changes of rhodopsin, which could reduce the speed of visual transduction.  相似文献   

7.
8.
ArfGAP1 promotes GTP hydrolysis in Arf1, a small G protein that interacts with lipid membranes and drives the assembly of the COPI coat in a GTP-dependent manner. The activity of ArfGAP1 increases with membrane curvature, suggesting a negative feedback loop in which COPI-induced membrane deformation determines the timing and location of GTP hydrolysis within a coated bud. Here we show that a central sequence of about 40 amino acids in ArfGAP1 acts as a lipid-packing sensor. This ALPS motif (ArfGAP1 Lipid Packing Sensor) is also found in the yeast homologue Gcs1p and is necessary for coupling ArfGAP1 activity with membrane curvature. The ALPS motif binds avidly to small liposomes and shows the same hypersensitivity on liposome radius as full-length ArfGAP1. Site-directed mutagenesis, limited proteolysis and circular dichroism experiments suggest that the ALPS motif, which is unstructured in solution, inserts bulky hydrophobic residues between loosely packed lipids and forms an amphipathic helix on highly curved membranes. This helix differs from classical amphipathic helices by the abundance of serine and threonine residues on its polar face.  相似文献   

9.
The Langmuir monolayer technique and voltammetric analysis were used to investigate the properties of model lipid membranes prepared from dioleoylphosphatidylcholine (DOPC), hexadecaprenol (C80), and their mixtures. Surface pressure-molecular area isotherms, current-voltage characteristics, and membrane conductance-temperature were measured. Molecular area isobars, specific molecular areas, excess free energy of mixing, collapse pressure and collapse area were determined for lipid monolayers. Membrane conductance, activation energy of ion migration across the membrane, and membrane permeability coefficient for chloride ions were determined for lipid bilayers. Hexadecaprenol decreases the activation energy and increases membrane conductance and membrane permeability coefficient. The results of monolayer and bilayer investigations show that some electrical, transport and packing properties of lipid membranes change under the influence of hexadecaprenol. The results indicate that hexadecaprenol modulates the molecular organisation of the membrane and that the specific molecular area of polyprenol molecules depends on the relative concentration of polyprenols in membranes. We suggest that hexadecaprenol modifies lipid membranes by the formation of fluid microdomains. The results also indicate that electrical transmembrane potential can accelerate the formation of pores in lipid bilayers modified by long chain polyprenols.  相似文献   

10.
Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule–cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell–mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid “shields” against self-destruction.

Natural killer cells mediate largely unidirectional potent cytotoxicity against diseased cells while sparing themselves. The authors show that the NK cell membrane contains and focuses lipids of high density which shield against self-destruction, and a similar densely packed postsynaptic membrane is responsible for the perforin resistance and NK cell-mediated killing evasion of an aggressive breast cancer cell line.  相似文献   

11.
Haque ME  McIntosh TJ  Lentz BR 《Biochemistry》2001,40(14):4340-4348
Poly(ethylene glycol) (PEG)-mediated fusion of phosphatidylcholine model membranes has been shown to mimic the protein-mediated biomembrane process [Lee, J., and Lentz, B. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9274-9279]. Unlike the simple model membranes used in this earlier study, the lipid composition of fusogenic biomembranes is quite complex. The purpose of this paper was to examine PEG-mediated fusion of highly curved (SUV) and largely uncurved (LUV) membrane vesicles composed of different lipids in order to identify lipid compositions that produce highly fusogenic membranes. Starting with liposomes composed of five lipids with different physical properties, dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylserine (DOPS), bovine brain sphingomyelin (SM), and cholesterol (CH), we systematically varied the composition and tested for the extent of PEG-mediated fusion after 5 min of treatment. We found that a vesicle system composed of four lipids, DOPC/DOPE/SM/CH, fused optimally at a 35/30/15/20 molar ratio. Each lipid seemed to play a part in optimizing the membrane for fusion. PE disrupted outer leaflet packing as demonstrated with TMA-DPH lifetime, C(6)-NBD-PC partitioning, and DPH anisotropy measurements, and thus significantly enhanced fusion and rupture, without significantly altering interbilayer approach (X-ray diffraction). An optimal ratio of PC/PE (35/30) produced a balance between fusion and rupture. CH and SM, when present at an optimal ratio of 3/4 in vesicles containing the optimal PC/PE ratio, reduced rupture without significantly reducing fusion. This optimal CH/SM ratio also enhanced outer leaflet packing, suggesting that fusion is dependent not only on outer leaflet packing but also on the properties of the inner leaflet. Addition of CH without SM enhanced rupture relative to fusion, while SM alone reduced both rupture and fusion. The optimal lipid composition is very close to the natural synaptic vesicle composition, suggesting that the synaptic vesicle composition is optimized with respect to fusogenicity.  相似文献   

12.
MK-801, a noncompetitive antagonist of the NMDA (N-methyl-D-aspartate) receptor, has protective effects against excitotoxicity and ethanol withdrawal seizures. We have determined membrane/buffer partition coefficients (Kp[mem]) of MK-801 and its rates of association with and dissociation from membranes. Kp[mem] (+/- SD) = 1137 (+/- 320) in DOPC membranes and 485 (+/- 99) in synaptoneurosomal (SNM) lipid membranes from rat cerebral cortex (unilamellar vesicles). In multilamellar vesicles, Kp[mem] was higher: 3374 (+/- 253) in DOPC and 6879 (+/- 947) in SNM. In cholesterol/DOPC membranes, Kp[mem] decreased as the cholesterol content increased. MK-801 associated with and dissociated from membranes rapidly. Addition of ethanol to SNM did not affect Kp[mem]. MK-801 decreased the cooperative unit size of DMPC membranes. The decrease was smaller than that caused by 1,4-dihydropyridine drugs, indicating a weaker interaction with the hydrocarbon core. Small angle x-ray diffraction, with multilayer autocorrelation difference function modeling, indicated that MK-801 in a cholesterol/DOPC membrane (mole ratio = 0.6) causes a perturbation at approximately 16.0 A from the bilayer center. In bilayers of cholesterol/DOPC = 0.15 (mole ratio) or pure DOPC, the perturbation caused by MK-801 was more complex. The physical chemical interactions of MK-801 with membranes in vitro are consistent with a fast onset and short duration of action in vivo.  相似文献   

13.
The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO2 and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P2 (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P2 and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.  相似文献   

14.
It is essential to understand the role of cardiolipin (CL) in mitochondrial membrane organization given that changes in CL levels contribute to mitochondrial dysfunction in type II diabetes, ischemia–reperfusion injury, heart failure, breast cancer, and aging. Specifically, there are contradictory data on how CL influences the molecular packing of membrane phospholipids. Therefore, we determined how increasing levels of heart CL impacted molecular packing in large unilamellar vesicles, modeling heterogeneous lipid mixtures found within the mitochondrial inner membrane, using merocyanine (MC540) fluorescence. We broadly categorized lipid vesicles of equal mass as loosely packed, intermediate, and highly packed based on peak MC540 fluorescence intensity. CL had opposite effects on loosely versus highly packed vesicles. Exposure of loosely packed vesicles to increasing levels of CL dose-dependently increased membrane packing. In contrast, increasing amounts of CL in highly packed vesicles decreased the packing in a dose-dependent manner. In vesicles that were categorized as intermediate packing, CL had either no effect or decreased packing at select doses in a dose-independent manner. Altogether, the results aid in resolving some of the discrepant data by demonstrating that CL displays differential effects on membrane packing depending on the composition of the lipid environment. This has implications for mitochondrial protein activity in response to changing CL levels in microdomains of varying composition.  相似文献   

15.
There are several examples of membrane-associated protein domains that target curved membranes. This behavior is believed to have functional significance in a number of essential pathways, such as clathrin-mediated endocytosis, which involve dramatic membrane remodeling and require the recruitment of various cofactors at different stages of the process. This work is motivated in part by recent experiments that demonstrated that the amphipathic N-terminal helix of endophilin (H0) targets curved membranes by binding to hydrophobic lipid bilayer packing defects which increase in number with increasing membrane curvature. Here we use state-of-the-art atomistic simulation to explore the packing defect structure of curved membranes, and the effect of this structure on the folding of H0. We find that not only are packing defects increased in number with increasing membrane curvature, but also that their size distribution depends nontrivially on the curvature, falling off exponentially with a decay constant that depends on the curvature, and crucially that even on highly curved membranes defects large enough to accommodate the hydrophobic face of H0 are never observed. We furthermore find that a percolation model for the defects explains the defect size distribution, which implies that larger defects are formed by coalescence of noninteracting smaller defects. We also use the recently developed metadynamics algorithm to study in detail the effect of such defects on H0 folding. It is found that the comparatively larger defects found on a convex membrane promote H0 folding by several kcal/mol, while the smaller defects found on flat and concave membrane surfaces inhibit folding by kinetically trapping the peptide. Together, these observations suggest H0 folding is a cooperative process in which the folding peptide changes the defect structure relative to an unperturbed membrane.  相似文献   

16.
Ceramides are minor structural components of membranes involved in biological functions. In the milk fat globule membrane (MFGM), ceramides are susceptible to affect the lateral packing of polar lipids, especially the milk sphingomyelin (MSM). To investigate this, palmitoylceramide (PCer) was added to MSM/DOPC (dioleoylphosphatidylcholine) in order to form hydrated lipid bilayers. Differential scanning calorimetry evidenced interactions of PCer with the MSM in the solid-ordered phase to form MSM/PCer structures with a higher thermostability than MSM. Atomic force microscopy revealed that PCer modified lipid packing in both the liquid-disordered DOPC phase where it increased thickness and mechanical stability, and the solid-ordered MSM phase where it recruited MSM molecules yet initially in the liquid phase at 26 °C and then increased the area of the MSM/PCer domains. The effect of PCer on the mechanical properties of the MSM-rich domains remains to be elucidated. These results bring new insights on the role of ceramides in the control of biophysical and biological properties of the MFGM. They also open perspectives for the design of emulsions and liposomes, using milk polar lipids as food-grade ingredients.  相似文献   

17.
In our study we investigated hemispherical phospholipid bilayer membranes and phospholipid vesicles made from hexadecaprenyl monophosphate (C80-P), dioleoylphosphatidylocholine (DOPC) and their mixtures by voltammetric and transmission electron microscopy (TEM) techniques. The current-voltage characteristics, the membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C80-P/DOPC. The membrane hydrophobic thickness and the activation energy of ion migration across the membrane have been determined. Hexadecaprenyl monophosphate decreased in comparison with DOPC bilayers, the membrane conductance, increased the activation energy and the membrane breakdown voltage for the various value of C80-P/DOPC mole ratio, respectively. The TEM micrographs of C80-P, DOPC and C80-P/DOPC lipid vesicles showed several characteristic structures, which have been described. The data indicate that hexadecaprenyl monophosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. We suggest that the dynamics and conformation of hexadecaprenyl monophosphate in membranes depend on the transmembrane electrical potential. The electron micrographs indicate that polyprenyl monophosphates with single isoprenyl chains form lipid vesicular bilayers. The thickness of the bilayer, evaluated from the micrographs, was 11 ± 1 nm. This property creates possibility of forming primitive bilayer lipid membranes by long single-chain polyprenyl phosphates in abiotic conditions. It can be the next step in understanding the origin of protocells. Received: 10 January 2000/Revised: 7 June 2000  相似文献   

18.
Amyloid fibrils are associated with multiple neurodegenerative disorders, such as Alzheimer's disease. Although biological membranes are involved in fibril plaque formation, the role of lipid membrane composition in fibril formation and toxicity is not well understood. We investigated the effect of cholesterol on the interaction of model lipid membranes with amyloid-β peptide (Aβ). With atomic force microscopy we demonstrated that binding of Aβ (1-42) to DOPC bilayer, enriched with 20% cholesterol, resulted in an intriguing formation of small nonuniform islands loaded with Aβ. We attribute this effect to the presence of nanoscale electrostatic domains induced by cholesterol in DOPC bilayers. Using frequency-modulated Kelvin probe force microscopy we were able to resolve these nanoscale electrostatic domains in DOPC monolayers. These findings directly affect our understanding of how the presence of cholesterol may induce targeted binding of amyloid deposits to biomembranes. We postulate that this nonhomogeneous electrostatic effect of cholesterol has a fundamental nature and may be present in other lipid membranes and monolayers.  相似文献   

19.
In recent years, the implication of sphingomyelin in lipid raft formation has intensified the long sustained interest in this membrane lipid. Accumulating evidences show that cholesterol preferentially interacts with sphingomyelin, conferring specific physicochemical properties to the bilayer membrane. The molecular packing created by cholesterol and sphingomyelin, which presumably is one of the driving forces for lipid raft formation, is known in general to differ from that of cholesterol and phosphatidylcholine membranes. However, in many studies, saturated phosphatidylcholines are still considered as a model for sphingolipids. Here, we investigate the effect of cholesterol on mixtures of dioleoyl-phosphatidylcholine (DOPC) and dipalmitoyl-phosphatidylcholine (DPPC) or distearoyl-phosphatidylcholine (DSPC) and compare it to that on mixtures of DOPC and sphingomyelin analyzed in previous studies. Giant unilamellar vesicles prepared from ternary mixtures of various lipid compositions were imaged by confocal fluorescence microscopy and, within a certain range of sterol content, domain formation was observed. The assignment of distinct lipid phases and the molecular mobility in the membrane bilayer was investigated by fluorescence correlation spectroscopy. Cholesterol was shown to affect lipid dynamics in a similar way for DPPC and DSPC when the two phospholipids were combined with cholesterol in binary mixtures. However, the corresponding ternary mixtures exhibited different spatial lipid organization and dynamics. Finally, evidences of a weaker interaction of cholesterol with saturated phosphatidylcholines than with sphingomyelin (with matched chain length) are discussed.  相似文献   

20.
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号