首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   

2.
Oxidized cholesterol has been widely reported to contribute to the pathogenesis of Alzheimer's disease (AD). However, the mechanism by which they affect the disease is not fully understood. Herein, we aimed to investigate the effect of 7-ketocholesterol (7keto) on membrane-mediated aggregation of amyloid beta (Aβ-42), one of the critical pathogenic events in AD. We have shown that when cholesterol is present in lipid vesicles, kinetics of Aβ nuclei formation is moderately hindered while that of fibril growth was considerably accelerated. The partial substitution of cholesterol with 7keto slightly enhanced the formation of Aβ-42 nuclei and remarkably decreased fibril elongation, thus maintaining the peptide in protofibrillar aggregates, which are reportedly the most toxic species. These findings add in understanding of how cholesterol and its oxidation can affect Aβ-induced cytotoxicity.  相似文献   

3.
We previously reported on the occurrence of prominin-1-carrying membrane vesicles that are released into body fluids from microvilli of epithelial cells. This release has been implicated in cell differentiation. Here we have characterized these vesicles released from the differentiated Caco-2 cells. We find that in these vesicles, prominin-1 directly interacts with membrane cholesterol and is associated with a membrane microdomain. The cholesterol depletion using methyl-β-cyclodextrin resulted in a marked increase in their release, and a dramatic change in the microvillar ultrastructure from a tubular shape to a “pearling” state, with multiple membrane constrictions, suggesting a role of membrane cholesterol in vesicle release from microvilli.  相似文献   

4.
Using a cell-free system we investigated a specific role of cholesterol in exocytotic processes. To modulate the cholesterol content in membrane methyl-beta-cyclodextrin was used as a cholesterol binding agent. The experimental conditions for cholesterol depletion from synaptosomal membrane structures were determined and depended on methyl-beta-cyclodextrin concentration, time and mediums temperature. The role of cholesterol was studied on the stages of synaptic vesicles docking and Ca(2+)-stimulated fusion which are the components of multivesicular compound exocytosis. Using dynamic light scattering technique we have found that after cholesterol depletion from synaptic vesicles the process of their aggregation (docking) remains unchanged. It was found that the rate of calcium-triggered fusion of synaptic vesicles depends on the membrane level of cholesterol. The decreasing level of synaptosomal plasma membrane cholesterol by 8% leads to suppression of the Ca(2+)-dependent membrane fusion with synaptic vesicles. But, under 25% reduction of plasma membrane cholesterol the level of membrane merging with synaptic vesicles did not differ from control; probably this is due to changes in physical properties of lipid bilayer and/ or disturbances in function of membrane proteins driving this process. In cholesterol depleted synaptosomes the exocytotic release of glutamate stimulated by calcium was decreased by 32%. Obtained data suggest that the cholesterol concenration in synaptosomal plasma membranes or synaptic vesicles is the crucial determinant for synaptic transmission efficiency in nerve terminals.  相似文献   

5.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

6.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state (2)H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using (2)H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

7.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   

8.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state 2H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using 2H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

9.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

10.
Endothelial dysfunction and cell death play an important role in pathogenesis of atherosclerosis. 7-Oxysterols, the major cytotoxic component found in oxidized low-density lipoprotein, are toxic to endothelial cells. However, the pathways and molecular mechanism involved in the process remain incompletely understood. In this study, we first investigate whether 7β-hydroxycholesterol (7βOH) or 7-ketocholesterol (7keto) induces apoptosis of human endothelial cell line (HUVEC-CS). We then examine possible involved pathways by focusing on cellular lipid, lysosomal pathways, cellular oxidative stress and mitochondrial pathways. Our results for the first time showed that 7-oxysterols induced apoptotic cell death of HUVEC-CS after 24 h, which was preceded by early lipid accumulation (6 h) and lysosomal membrane permeabilization (6−12 h). Afterward, levels of reactive oxygen species, mitochondrial membrane permeabilization, and lysosomal cathepsin were increased assayed by immuno-cytochemistry and blotting. Notably, the exposure to 7βOH or 7keto induced expressions and secretion of isoforms of von Willebrand factor (VWF). We conclude that apoptosis of HUVEC-CS induced by 7βOH or 7keto mediates by early lysosomal lipid accumulation and oxidative lysosomal pathways, which results in induction and release of VWF. The results suggest the cell death induced by 7-oxysterols may contribute to endothelial dysfunction and atherothrombosis.  相似文献   

11.
We report a combined dynamic light scattering (DLS) and neutron spin-echo (NSE) study on the local bilayer undulation dynamics of phospholipid vesicles composed of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC) under the influence of temperature and the additives cholesterol and trehalose. The additives affect vesicle size and self-diffusion. Mechanical properties of the membrane and corresponding bilayer undulations are tuned by changing lipid headgroup or acyl chain properties through temperature or composition. On the local length scale, changes at the lipid headgroup influence the bilayer bending rigidity κ less than changes at the lipid acyl chain: We observe a bilayer softening around the main phase transition temperature Tm of the single lipid system, and stiffening when more cholesterol is added, in concordance with literature. Surprisingly, no effect on the mechanical properties of the vesicles is observed upon the addition of trehalose.  相似文献   

12.
Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80–100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs.  相似文献   

13.
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-β-cyclodextrin (MβCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (Cm), fluctuations of which reflect exocytosis and endocytosis. Treatment with MβCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca2+-evoked increase in Cm (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MβCD enhanced the attenuation of Cm increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MβCD resulted in an immediate Cm decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in Cm was three-fold slower than MβCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MβCD had no effect on the specific Cm and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MβCD-induced Cm decline. Thus acute exposure to MβCD evokes a Cm decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.  相似文献   

14.
Giant vesicles formed of 1,2-dipalmitoylphosphatidylcholine (DPPC) and sterols (cholesterol or ergosterol) in water and water/ethanol solutions have been used to examine the effect of sterol composition and ethanol concentration on the area compressibility modulus (K(a)), overall mechanical behavior, vesicle morphology, and induction of lipid alkyl chain interdigitation. Our results from micropipette aspiration suggest that cholesterol and ergosterol impact the order and microstructure of the gel (L(beta)') phase DPPC membrane. At low concentration (10-15 mol%) these sterols disrupt the long-range lateral order and fluidize the membrane (K(a) approximately 300 mN/m). Then at 18 mol%, these sterols participate in the formation of a continuous cohesive liquid-ordered (L(o)) phase with a sterol-dependent membrane density (K(a) approximately 750 for DPPC/ergosterol and K(a) approximately 1100 mN/m for DPPC/cholesterol). Finally at approximately 40 mol% both cholesterol and ergosterol impart similar condensation to the membrane (K(a) approximately 1200 mN/m). Introduction of ethanol (5-25 vol%) results in drops in the magnitude of K(a), which can be substantial, and sometimes individual vesicles with lowered K(a) reveal two slopes of tension versus apparent area strain. We postulate that this behavior represents disruption of lipid-sterol intermolecular interactions and therefore the membrane becomes interdigitation prone. We find that for DPPC vesicles with sterol concentrations of 20-25 mol%, significantly more ethanol is required to induce interdigitation compared to pure DPPC vesicles; approximately 7 vol% more for ergosterol and approximately 10 vol% more for cholesterol. For lower sterol concentrations (10-15 mol%), interdigitation is offset, but by <5 vol%. These data support the idea that ergosterol and cholesterol do enhance survivability for cells exposed to high concentrations of ethanol and provide evidence that the appearance of the interdigitated (L(beta)I) phase bilayer is a major factor in the disruption of cellular activity, which typically occurs between approximately 12 and approximately 16 vol% ethanol in yeast fermentations. We summarize our findings by producing, for the first time, "elasticity/phase diagrams" over a wide range of sterol (cholesterol and ergosterol) and ethanol concentrations.  相似文献   

15.
Cuevas FJ  Jameson DM  Sotomayor CP 《Biochemistry》2006,45(46):13855-13868
Diverse experimental and theoretical evidence suggests that plasma membranes contain cholesterol-induced segregated domains that could play a key role in the modulation of membrane functions, including intrinsic enzyme activity. To gain insight into the role of cholesterol, we reconstituted pig kidney Na+/K+-ATPase into unilamellar vesicles of endogenous lipids mimicking the natural membrane and addressed the question of how modification of the cholesterol content could affect the ATPase activity via changes in the membrane lipid phase and in the protein structure and dynamics. We used steady-state and time-resolved fluorescence spectroscopy with the lipid phase probes DPH and Laurdan and the protein probe fluorescein and also used infrared spectroscopy using attenuated total reflectance. Upon modification of membrane cholesterol content, the ATPase activity did not change monotonically but instead exhibited abrupt changes resulting in two peaks at or close to critical cholesterol mole fractions (25 and 33.3 mol %) predicted by the superlattice or regular distribution model. Fluorescence parameters associated with the membrane probes also showed abrupt changes with peaks, coincident with the cholesterol concentrations associated with the peaks in the enzyme activity, while parameters associated with the protein probes also showed slight but abrupt changes resulting in dips at the same cholesterol concentrations. Notably, the IR amide I band maximum also showed spectral shifts, characterized by a frequency variation pattern with peaks at the same cholesterol concentrations. Overall, these results indicate that the lipid phase had slightly lower hydration, at or near the two critical cholesterol concentrations predicted by the superlattice theory. However, in the protein domains monitored there was a slight but significant hydration increase along with increased peptide backbone flexibility at these cholesterol concentrations. We propose that in the vicinity of the critical mole fractions, where superlattice formation can occur, minute changes in cholesterol concentration produce abrupt changes in the membrane organization, increasing interdomain surfaces. These changes, in turn, induce small changes in the protein's structure and dynamics, therefore acting to fine-tune the enzyme.  相似文献   

16.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   

17.
Bacteriorhodopsin (BR) was incorporated into phosphatidylcholine (PC) vesicles containing different amounts of other lipids. Under the conditions of nullified membrane potential, light-induced proton movement seemed to follow a kinetic scheme which assumed the existence of a proton-pumping inhibition process characterized by a rate constant, kI. The temperature dependence of both kI and the membrane proton leak rate constant (kD) obeyed a simple Arrhenius equation. The presence of cholesterol in the membrane significantly increased the activation energy (Ea) of both the inhibition and leak process. However, further addition of phosphatidic acid (PA) suppressed the increase of Ea associated with kI. The initial proton pumping rate (R0) of vesicles reconstituted with PC showed a bell-shaped temperature dependence with a maximum at approximately 20 degrees C. The addition of cholesterol abolished this dependence. These results suggest that the molecular origin of the inhibition process characterized by kI is different from that of R0 or kD. The temperature dependence of the steady-state fluorescence polarization of dansylated bacteriorhodopsin in vesicles was also investigated. The polarization of the labels in the vesicles without cholesterol showed a bell-shaped temperature dependence with a maximum at approximately 20 degrees C. However, in the presence of cholesterol, the polarization increased linearly as temperature decreased. A comparison of these results with the observed proton movement in similarly reconstituted systems with unmodified protein indicates that membranes with a low fluidity and negatively charged surfaces enhance proton pumping efficiency of bacteriorhodopsin.  相似文献   

18.
A Kintanar  A C Kunwar  E Oldfield 《Biochemistry》1986,25(21):6517-6524
We have investigated the deuterium (2H) nuclear magnetic resonance (NMR) spectra of two 2H-labeled fluorescence probes (trans,trans,trans-1,6-diphenylhexa-1,3,5-trienes, DPHs) incorporated into model lipid bilayer membrane systems at various temperatures. The membranes consisted of multilamellar bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing varying concentrations of cholesterol. The conventional one-order parameter approach often used in the analysis of the NMR data of lipid membranes does not explain the observed temperature variations of the spectral features. Consistent with the molecular symmetry, the results have thus been analyzed in terms of an ordering matrix with more than one independent element. The molecular order parameter (SNMR), the order along the long molecular axis, in the pure lipid system varies from 0.49 to 0.26 as the temperature is increased from 25 to 57 degrees C. These values are somewhat larger than the order parameters obtained from fluorescence depolarization (SFLU) on sonicated DMPC vesicles. Such discrepancies probably arise from the looser packing of the sonicated vesicles. Addition of cholesterol to the model membranes causes the order parameter of the probe molecules to increase. At 35 degrees C, SNMR increases from 0.38 (with no cholesterol) to 0.92 (in the presence of 50 mol % cholesterol). These values are about 10% larger than those obtained from fluorescence depolarization studies on sonicated vesicles. The SNMR for DPH are somewhat larger than those obtained in earlier NMR studies of 2H-labeled cholesterol. However, they compare well with those obtained for 2H-labeled DMPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The membrane properties of cholesterol auto-oxidation products, 7-ketocholesterol, 7 beta-hydroxycholesterol, 7 alpha-hydroxycholesterol and 25-hydroxycholesterol were examined. Monolayer studies show that these oxysterols are perpendicularly orientated at the interphase. Only 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol are tilted at low surface pressures. In mixed monolayers with dioleoylphosphatidylcholine, 7-ketocholesterol, 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol show a condensing effect in this order, although to a lesser extent that that observed for cholesterol. In liposomes these oxysterols also reduce glucose permeability and in the same order as their condensing effect. On the other hand 25-hydroxycholesterol shows no condensing effect in monomolecular layers whereas glucose permeability in liposomes is enormously increased. The permeability increase is already maximal at 2.5 mol% 25-hydroxycholesterol. Differential scanning calorimetry experiments reveal that all four oxysterols tested reduce the heat content of the gel----liquid-crystalline phase transition. It is concluded that 7-ketocholesterol, 7 beta-hydroxycholesterol and 7 alpha-hydroxycholesterol have a cholesterol like effect, although less efficient than cholesterol, whereas 25-hydroxycholesterol showing no condensing effect acts as a spacer molecule. Packing defects in the hydrophobic core of the bilayer due to the presence of the C-25 hydroxyl group are believed to cause the permeability increase. The transfer of radiolabelled (oxy)sterols from the monolayer to lipoproteins or vesicles in the subphase was studied. The transfer rate increases in the following order 7-ketocholesterol, 7 beta-hydroxycholesterol, 7 alpha-hydroxycholesterol, 25-hydroxycholesterol. The difference in rate between 7-ketocholesterol and 25-hydroxycholesterol is 20-fold. A higher rate of transfer is observed in the presence of high density lipoproteins and small unilamellar vesicles. A transfer rate for cholesterol is hardly measurable under these conditions. The transfer measured is consistent with the involvement of a water-soluble intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号