首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Leber hereditary optic neuropathy (LHON) is associated with mutations of mtDNA, but two features of LHON pedigrees are not explicable solely on the basis of mitochondrial inheritance. There is a large excess of affected males, and not all males at risk develop the disease. These observations could be explained by the existence of an X-linked visual loss susceptibility gene. This hypothesis was supported by linkage studies in Finland, placing the susceptibility locus at DXS7, with a maximum lod score of 2.48 at a recombination fraction of 0. Linkage studies in 1 Italian and 12 British families with LHON, analyzed either together or separately depending on the associated mtDNA mutation, have excluded the presence of such a locus from an interval of about 30 cM around DXS7 in these kindreds, with a total lod score of -26.51 at a recombination fraction of 0.  相似文献   

3.
Cleidocranial dysplasia (CCD) is an autosomal dominant generalized bone dysplasia characterized by mild-to-moderate short stature, clavicular aplasia or hypoplasia, supernumerary and ectopic teeth, delayed eruption of secondary teeth, a characteristic craniofacial appearance, and a variety of other skeletal anomalies. We have performed linkage studies in five families with CCD, with 24 affected and 20 unaffected individuals, using microsatellite markers spanning two candidate regions on chromosomes 8q and 6. The strongest support for linkage was with chromosome 6p microsatellite marker D6S282 with a two-point lod score of 4.84 (theta = .03). Furthermore, the multipoint lod score was 5.70 in the interval between D6S282 and D6S291. These data show that the gene for autosomal dominant CCD is located within a 19-cM interval on the short arm of chromosome 6, between D6S282 and D6S291.  相似文献   

4.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

5.
Multipoint linkage analysis is a powerful method for mapping a rare disease gene on the human gene map despite limited genotype and pedigree data. However, there is no standard procedure for determining a confidence interval for gene location by using multipoint linkage analysis. A genetic counselor needs to know the confidence interval for gene location in order to determine the uncertainty of risk estimates provided to a consultant on the basis of DNA studies. We describe a resampling, or "bootstrap," method for deriving an approximate confidence interval for gene location on the basis of data from a single pedigree. This method was used to define an approximate confidence interval for the location of a gene causing nonsyndromal X-linked mental retardation in a single pedigree. The approach seemed robust in that similar confidence intervals were derived by using different resampling protocols. Quantitative bounds for the confidence interval were dependent on the genetic map chosen. Once an approximate confidence interval for gene location was determined for this pedigree, it was possible to use multipoint risk analysis to estimate risk intervals for women of unknown carrier status. Despite the limited genotype data, the combination of the resampling method and multipoint risk analysis had a dramatic impact on the genetic advice available to consultants.  相似文献   

6.
Huntington disease: no evidence for locus heterogeneity   总被引:11,自引:0,他引:11  
A total of 63 families with Huntington disease (HD) were examined for linkage between HD and G8 (D4S10). The families included 57 Caucasian, four Black American, and two Japanese. The combined maximum lod score was 87.69 at theta = 0.04 (99% confidence interval 0.018-0.071). The maximum frequency of recombination was 0.03 in males and 0.05 in females. Fifty-seven families gave positive lod scores; five small families gave mildly negative lod scores. The maximum likelihood estimate of alpha, the proportion of linked loci, was 1.0 with a lower 99% confidence interval of 0.88. These data suggest that there is only one HD locus, although a second rare locus cannot be ruled out.  相似文献   

7.
Linkage of at least two complementation groups of ataxia-telangiectasia (AT) to the chromosomal region 11q23 is now well established. We provide here an 18-point map of the surrounding genomic region, derived from linkage analysis of 40 CEPH families. On the basis of this map, 111 AT families from Turkey, Israel, England, Italy, and the United States were analyzed, localizing the AT gene(s) to an 8-cM sex-averaged interval between the markers STMY and D11S132/NCAM. A new Monte Carlo method for computing approximate location scores estimates this location as being at least 10(8) times more likely than the next most likely interval, with a support interval midway between STMY and D11S132 that is either 5.2 cM (sex-averaged and conservatively based on 3 lod scores from the maximum-location score) or 2.8 cM (male specific, based on a 2.72:1 interval-specific female-to-male distance ratio.  相似文献   

8.
Summary We have isolated an X chromosome probe, St35.691 (DXS305), which detects two RFLPs with TaqI and PstI, whose combined heterozygosity is about 60%. This probe has been assigned to Xq28 by physical and genetic mapping and is very closely linked to DXS52, DXS15, and the coagulation factor VIII gene (F8C). The best estimate of the recombination fraction for the DXS52-DXS305 interval is 0.014, with a lod score of 50.1. Multipoint analysis places DXS305 on the same side of F8C as DXS52, but complete ordering of the three loci was not possible with our present data. This highly informative marker should be useful in the precise mapping of the many disease genes that have been assigned to the Xq28 band.  相似文献   

9.
Liang KY  Chiu YF  Beaty TH 《Human heredity》2001,51(1-2):64-78
Multipoint linkage analysis is a powerful tool to localize susceptibility genes for complex diseases. However, the conventional lod score method relies critically on the correct specification of mode of inheritance for accurate estimation of gene position. On the other hand, allele-sharing methods, as currently practiced, are designed to test the null hypothesis of no linkage rather than estimate the location of the susceptibility gene(s). In this paper, we propose an identity-by-descent (IBD)-based procedure to estimate the location of an unobserved susceptibility gene within a chromosomal region framed by multiple markers. Here we deal with the practical situation where some of the markers might not be fully informative. Rather the IBD statistic at an arbitrary within the region is imputed using the multipoint marker information. The method is robust in that no assumption about the genetic mechanism is required other than that the region contains no more than one susceptibility gene. In particular, this approach builds upon a simple representation for the expected IBD at any arbitrary locus within the region using data from affected sib pairs. With this representation, one can carry out a parametric inference procedure to locate an unobserved susceptibility gene. In addition, here we derive a sample size formula for the number of affected sib pairs needed to detect linkage with multiple markers. Throughout, the proposed method is illustrated through simulated data. We have implemented this method including exploratory and formal model-fitting procedures to locate susceptibility genes, plus sample size and power calculations in a program, GENEFINDER, which will be made available shortly.  相似文献   

10.
Hereditary neuralgic amyotrophy (HNA) is a rare autosomal dominant disorder on chromosome 17q, associated with recurrent, episodic, painful brachial plexus neuropathy. Dysmorphic features, including hypotelorism, long nasal bridge and facial asymmetry, are frequently associated with HNA. To assess genetic homogeneity, determine the cytogenetic location, and identify flanking markers for the HNA locus, six pedigrees were studied with multiple DNA markers from distal chromosome 17q. The results in all pedigrees supported linkage of the HNA locus to chromosome 17. A maximum combined lod score (Ζ = 10.94, £ = 0.05) was obtained with marker D17S939 and the maximum multipoint lod score was 22.768 in the interval defined by D17S802– D17S939. An analysis of crossovers placed the HNA locus within an approximate 4.0-cM interval flanked by D17S1603 and D17S802. Analysis of DNA from a human/mouse somatic cell hybrid with linked markers suggests that band 17q25 harbors the HNA locus. These results support genetic homogeneity within HNA and define a specific interval and a precise cytogenetic location in chromosome 17q25 for this disorder. Received: 24 June 1997 / Accepted: 21 August 1997  相似文献   

11.
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance. Genetic linkage studies were undertaken to determine the chromosomal location of the Batten disease mutation (CLN3). Following identification of linkage to the haptoglobin locus, linkage analysis has been carried out in 42 families by using DNA markers for loci on the long arm of human chromosome 16. The maximal lod score between Batten disease and the locus D16S148 calculated for combined sexes is 6.05 at a recombination fraction theta = 0.00. Multilocus analysis using five loci indicated the most likely order to be HP-D16S151-D16S150-CLN3-D16S148-D16S147. The maximal location score for CLN3 was 48 (equivalent to a lod score of 10.4) in that interval within this fixed marker map.  相似文献   

12.
Linkage of DNA markers to cystic fibrosis in 26 families.   总被引:6,自引:5,他引:1       下载免费PDF全文
Two DNA markers, the met oncogene and the anonymous probe, pJ3.11, previously reported to be tightly linked to cystic fibrosis (CF), were used for linkage analysis in 26 families with two or more individuals affected with CF. A new high frequency polymorphism was identified using BanI and the pmetD probe. The results of linkage analysis were as follows: between met and CF, lod score of 18.2 at theta of .009; between pJ3.11 and CF, lod score of 12.1 at theta of 0; and between met and pJ3.11, lod score of 16.7 at theta of 0. These data indicate that most or all of CF is due to an abnormality at a single locus and that the DNA markers are useful for prenatal diagnosis and heterozygote detection within affected families.  相似文献   

13.
Summary Construction of a genome map of highly polymorphic markers has become possible in the past decade. Establishing a complete marker map is an enormous task. Therefore, designs to map molecular markers should be optimal. Designs to detect and estimate linkage between markers from segregating populations were studied. Two measures of design quality were used. The expectation of the maximum lod score indicates the possibility of designs to detect linkage. The accuracy of estimating recombination rate was measured as the probability that the true recombination rate is in a specified internal given the estimate. Accurate approximate methods were developed for rapid evaluation of designs. Seven family types (e.g., double backcross) can be distinguished that describe all families in a segregating population. The family type influences the expected maximum lod score and the accuracy of estimation. The frequency of favorable family types increased with increasing marker polymorphism. At a true recombination rate of 0.20,27 observations on offspring when five alleles were segregating, and 55 observations on offspring when two alleles were segregating, were necessary to obtain an expected maximum lod score of 3. The probability that the true recombination rate was between 0.15 and 0.25, given an estimate of 0.20, was about 0.85 for a design with 40 families with ten offspring and two alleles segregating and for a design with ten families with ten offspring and six alleles segregating. For smaller designs, accuracies were less, approximate evaluation of accuracy was not justified and, on average, true recombination rates were much greater than estimated given a specified value for the estimated recombination rate.  相似文献   

14.
Effects of misspecifying genetic parameters in lod score analysis   总被引:38,自引:0,他引:38  
The lod score method is widely used to test linkage and to estimate the recombination fraction between a disease locus and a marker locus. The parameters (gene frequency, penetrance, and degree of dominance) are assumed to be known at each locus. This condition may not be fulfilled at the disease locus. In this paper, we evaluate the errors due to the use of wrong parameters. The power of the linkage test is sensitive to the degree of dominance, and slightly to the penetrance, but not to the gene frequency. In contrast, the estimation of the recombination fraction may be strongly affected by an error on any genetic parameter.  相似文献   

15.
Autosomal dominant familial exudative vitreoretinopathy (adFEVR) is a hereditary disorder characterized by the incomplete vascularization of the peripheral retina. The primary biochemical defect in adFEVR is unknown. The adFEVR locus has tentatively been assigned to 11q by linkage studies. We report the results of an extended multipoint linkage analysis of two families with adFEVR by using five markers (INT2, D11S533, D11S527, D11S35, and CD3D) from 11q13-q23. Pairwise linkage data obtained in the two families were rather similar and hence have not provided evidence for genetic heterogeneity. The highest complied two-point lod score (3.67, at a recombination fraction of .07) was obtained for the disease locus versus D11S533. Multipoint analyses showed that the adFEVR locus maps most likely, with a maximum location score of over 20, between D11S533/D11S527 and D11S35, at recombination rates of .147 and .104, respectively. Close linkage without recombination (maximum lod score 11.26) has been found between D11S533 and D11S527.  相似文献   

16.
Several different methods for linkage analysis are shown to arise from a single likelihood function L for the observed allele-sharing data at multiple markers in a chromosomal region. These include classical parametric lod score methods, nonparametric or "model-free" affected pedigree-member (APM) methods, and the Gaussian process method. Setting the methods in the context of the likelihood function L clarifies their underlying assumptions. A test statistic derived from L, the efficient score statistic, is introduced. It is asymptotically equivalent to the lod score, but it can be easier to compute when the penetrances and frequencies of alleles of the trait gene are not known. APM test statistics and the Gaussian lod score are shown to be special cases of efficient score statistics. This unified framework facilitates exploration of a range of models for the effects of a putative trait-predisposing gene, and it facilitates sensitivity analyses to examine the consequences of model misspecification.  相似文献   

17.
Objective To estimate the relative risk of recurrence of oral cleft in first degree relatives in relation to cleft morphology.Design Population based cohort study.Setting Data from the medical birth registry of Norway linked with clinical data on virtually all cleft patients treated in Norway over a 35 year period.Participants 2.1 million children born in Norway between 1967 and 2001, 4138 of whom were treated for an oral cleft.Main outcome measure Relative risk of recurrence of isolated clefts from parent to child and between full siblings, for anatomic subgroups of clefts.Results Among first degree relatives, the relative risk of recurrence of cleft was 32 (95% confidence interval 24.6 to 40.3) for any cleft lip and 56 (37.2 to 84.8) for cleft palate only (P difference=0.02). The risk of clefts among children of affected mothers and affected fathers was similar. Risks of recurrence were also similar for parent-offspring and sibling-sibling pairs. The “crossover” risk between any cleft lip and cleft palate only was 3.0 (1.3 to 6.7). The severity of the primary case was unrelated to the risk of recurrence.Conclusions The stronger family recurrence of cleft palate only suggests a larger genetic component for cleft palate only than for any cleft lip. The weaker risk of crossover between the two types of cleft indicates relatively distinct causes. The similarity of mother-offspring, father-offspring, and sibling-sibling risks is consistent with genetic risk that works chiefly through fetal genes. Anatomical severity does not affect the recurrence risk in first degree relatives, which argues against a multifactorial threshold model of causation.  相似文献   

18.
Fine mapping of the schizophrenia susceptibility locus on chromosome 1q22   总被引:6,自引:0,他引:6  
Schizophrenia is a serious neuropsychiatric illness estimated to affect approximately 1% of the general population. As part of a genome scan for schizophrenia susceptibility loci, we have previously reported a maximum heterogeneity four-point lod score of 6.50 on chromosome 1q21-22 in a group of 22 medium-sized Canadian families, selected for study because multiple relatives were clinically diagnosed with schizophrenia or schizoaffective disorder. We have now conducted fine mapping of this locus in the same set of individuals using 15 genetic markers spanning an approximately 15-cM interval. Parametric linkage analysis with GENEHUNTER v2.1 and VITESSE v2.0 produced a maximum multipoint heterogeneity lod score of 6.50, with a Zmax-1 support interval of <3 cM, corresponding to approximately 1 Mb. Physical mapping and sequence analysis from this region confirmed the presence of an approximately 81-kb tandem duplication, containing low-affinity IgG receptor genes and heat shock protein genes. The sequences of the two copies of this duplication are approximately 97% identical, which has led to the collapse of the two copies into one in the June 2002 NCBI Build 30 of the Human Genome. This duplication may be involved in genomic instability, leading to gene deletion, and so presents an intriguing candidate locus for schizophrenia susceptibility.  相似文献   

19.
Methods for studying recombination on chromosomes that undergo nondisjunction   总被引:12,自引:0,他引:12  
A lod score method is provided for mapping genes relative to the centromere using family data from autosomal trisomies. Such gene-centromere mapping can be performed whenever two or more members of a meiotic tetrad can be recovered. The critical mapping parameter is not the recombination value theta or the map distance omega, but the probability of nonreduction in a heterozygous host, the probability of heterozygosity (nonreduction) is 1-gamma/2 for a meiosis I error and gamma for a meiosis II error. Under various assumptions regarding chiasma interference, gamma can be related to theta and omega. We provide specific methods for estimating gamma and theta from trisomy data using maximum likelihood, so that recombination may be studied on chromosomes that underwent nondisjunction.  相似文献   

20.
Genetic Heterogeneity of Familial Hemiplegic Migraine   总被引:9,自引:1,他引:8       下载免费PDF全文
Familial hemiplegic migraine (FHM) is an autosomal dominant variety of migraine with aura. We previously mapped a gene responsible for this disorder to the short arm of chromosome 19, within a 30-cM interval bracketed by D19S216 and D19S215. Linkage analysis conducted on two large pedigrees did not show any evidence of heterogeneity, despite their clinical differences due to the presence, in one family, of cerebellar ataxia and nystagmus. Herein we report linkage data on seven additional FHM families including another one with cerebellar ataxia. Analysis was conducted with a set of seven markers spanning the D19S216-D19S215 interval. Two-point and multipoint lod score analyses as well as HOMOG testing provided strong evidence for genetic heterogeneity. Strong evidence of linkage was obtained in two families and of absence of linkage in four families. The posterior probability of being of the linked type was >.95 in the first two families and <.01 in four other ones. It was not possible to draw any firm conclusion for the last family. Thus, within the nine families so far tested, four were linked, including those with associated cerebellar ataxia. We could not find any clinical difference between the pure FHM families regardless of whether they were linked. In addition to the demonstration of genetic heterogeneity of FHM, this study also allowed us to establish that the most likely location of the gene was within an interval of 12 cM between D19S413 and D19S226.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号