共查询到20条相似文献,搜索用时 0 毫秒
1.
Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes 总被引:2,自引:0,他引:2
G Krishnamoorthy 《Biochemistry》1986,25(21):6666-6671
Application of a temperature jump (2.5 degrees C) to a suspension of liposomes, having phosphate (delta pK/delta T approximately 0.005) as the internal buffer and tris(hydroxymethyl)aminomethane (delta pK/delta T approximately 0.031) as the external buffer, created a delta pH (pHin - pHout) of positive sign in ca. 5 microseconds. Decay of this delta pH was monitored by using the fluorescent pH indicator 8-hydroxy-1,3,6-pyrenetrisulfonic acid entrapped inside the liposome. This technique is useful to study transmembrane proton movement in the time range 5 microseconds-10 s at physiological pH values. The kinetics of proton transport aided by ion carriers such as nigericin, monensin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and valinomycin were studied by our method. The electrogenic nature of transport by CCCP and valinomycin and electroneutral ion transport by nigericin and monensin were shown. From the kinetics of proton transport aided by gramicidin, the time-averaged single-channel conductance of gramicidin channels was estimated to be (2.1 +/- 0.5) X 10(-16) S for H+ at pH 7.5. 相似文献
2.
3.
Indole has many, diverse roles in bacterial signaling. It regulates the transition from exponential to stationary phase, it is involved in the control of plasmid stability, and it influences biofilm formation, virulence, and stress responses (including antibiotic resistance). Its role is not restricted to bacteria, and recently it has been shown to include mutually beneficial signaling between enteric bacteria and their mammalian hosts. In many respects indole behaves like the signaling component of a quorum-sensing system. Indole synthesized within the producer bacterium is exported into the surroundings where its accumulation is detected by sensitive cells. A view often repeated in the literature is that in Escherichia coli the AcrEF-TolC and Mtr transporter proteins are involved in the export and import, respectively, of indole. However, the evidence for their involvement is indirect, and it has been known for a long time that indole can pass directly through a lipid bilayer. We have combined in vivo and in vitro approaches to examine the relative importance of protein-mediated transport and direct passage across the E. coli membrane. We conclude that the movement of indole across the E. coli membrane under normal physiological conditions is independent of AcrEF-TolC and Mtr. Furthermore, direct observation of individual liposomes shows that indole can rapidly cross an E. coli lipid membrane without the aid of any proteinaceous transporter. These observations not only enhance our understanding of indole signaling in bacteria but also provide a simple explanation for the ability of indole to signal between biological kingdoms. 相似文献
4.
Glutathione transport was studied in brush-border membrane vesicles of rabbit small intestine in which gamma-glutamyl transpeptidase (EC 2.3.2.2) had been inactivated by a specific affinity-labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT125). Transport of intact [glycine-2-3H]GSH occurred into an osmotically active intravesicular space of AT125-treated membranes. The 0.1 M NaSCN gradient (Na+ inside greater than Na+ outside) in the transport medium could be replaced with KSCN or NaCl without affecting transport activity. The initial rate of GSH transport followed Michaelis-Menten saturation kinetics (Km = 17 microM). The results suggest that, in these membranes, there was an Na+-independent mediated transport for intact GSH with marked specificity and affinity. In fact glycine, glutamic acid and cysteine did not decrease GSH uptake, as was also true for glycylglycine and glycylglycylglycine; only gamma-glutamylcysteinylglycyl ester, a derivative of GSH, partially inhibited GSH transport. 相似文献
5.
The initial rate of Cu2+ movement across the thylakoid membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membranes loaded with the Cu(2+)-sensitive fluorophore Phen Green SK. Cu2+ transport was rapid, reaching completion within 0.5 s. The initial rate of uptake was dependent upon Cu2+ concentration and saturated at about 0.6 microm total Cu2+. Cu2+ uptake was maximal at a thylakoid lumen pH of 7.0. Cu2+ transport was inhibited by Zn2+ but was largely unaffected by Mn2+ and Cu+. Zn2+ inhibited Cu2+ transport to a maximum of 60%, indicating that there may be more than one transporter for copper in pea thylakoid membranes. 相似文献
6.
7.
8.
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide. 相似文献
9.
We describe a new way to analyze targeting in protein translocation. A fusion in which ubiquitin (Ub) is positioned between a signal sequence and a reporter domain is cleaved by Ub-specific proteases (UBPs) in the cytosol unless the fusion can 'escape' into a compartment such as the endoplasmic reticulum (ER). The critical step involves rapid folding of the newly formed Ub moiety, which precludes its translocation and makes possible its cleavage by UBPs. However, if a sufficiently long spacer is present between the signal sequence and Ub, then by the time the Ub polypeptide emerges from the ribosome, the latter is already docked at the transmembrane channel, allowing the translocation of both the Ub and reporter domains of the fusion into the ER. We show that Ub fusions can be used as in vivo probes for kinetic and stochastic aspects of targeting in protein translocation, for distinguishing directly between cotranslational and posttranslational translocation, and for comparing the strengths of different signal sequences. This method should also be applicable to non-ER translocation. 相似文献
10.
The initial rate of Fe(2+) movement across the inner envelope membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membrane vesicles loaded with the Fe(2+)-sensitive fluorophore, Phen Green SK. The rate of Fe(2+) transport was rapid, coming to equilibrium within 3s. The maximal rate and concentration dependence of Fe(2+) transport in predominantly right-side-out vesicles were nearly equivalent to those measured in largely inside-out vesicles. Fe(2+) transport was stimulated by an inwardly directed electrochemical proton gradient across right-side-out vesicles, an effect that was diminished by the addition of valinomycin in the presence of K(+). Fe(2+) transport was inhibited by Zn(2+), in a competitive manner, as well as by Cu(2+) and Mn(2+). These results indicate that inward-directed Fe(2+) transport across the chloroplast inner envelope occurs by a potential-stimulated uniport mechanism. 相似文献
11.
Trivalent cations of the lanthanide series (La3+----Yb3+) stimulated uptake of proline or glucose in rabbit small intestinal brush-border membrane vesicles. The lanthanides stimulated uptake to an extent greater than Al3+, choline, and in many cases, Na+. A time-course of Er3+-stimulated glucose uptake gave initial rates and overshoots greater than Na+ stimulation. The best activators were Sm3+, Eu3+ and Tm3+, which stimulated proline initial uptakes by 400-600%, and stimulated glucose uptake by 120-150%, compared to Na+. The best lanthanide cotransport activators possessed high third ionization potentials. 相似文献
12.
V V Khramtsov M V Panteleev L M Weiner 《Journal of biochemical and biophysical methods》1989,18(3):237-246
A new method for measuring the rates of proton transfer through bilayer phospholipid membranes using pH-sensitive nitroxyl radicals is suggested. The pH-sensitive alkylating radical was covalently bound to glutathione. This modified glutathione is pH sensitive at pH 1.5-4.5 and does not penetrate across phospholipid membranes. Using ESR this probe was applied to register the kinetics of pH variations inside large unilamellar phospholipid vesicles after creation of a transmembrane proton gradient. In the acidic region (pH approximately 3) the main mechanism of transmembrane proton transfer is that via transport of a proton in the form of an undissociated acid. The membrane permeability coefficients have been determined for a series of acids (HCl, HClO4, HNO3, upper estimate for H2SO4). Taking into account that imidazoline and imidazolidine nitroxyl radicals can be used as pH probes in a wide range of pH, the present method can be developed for measuring the rates of transmembrane proton transfer in neutral and alkaline media. 相似文献
13.
Ion transport across lipid bilayer membranes in the presence of macrotetrolide antibiotics has been studied by stationary conductance and nonstationary relaxation methods. The results are discussed on the basis of a carrier model which has already been successfully applied to valinomycin induced ion transport. Again a kinetic analysis has been performed from which the single rate constants of the carrier model could be derived. In addition the equilibrium constant of complex formation in the aqueous phase could be determined. Measurements have been made for 4 macrotetrolides, for several ions and for various chain lengths of the lipids molecules composing the membrane. 相似文献
14.
Norbert Sauer Kerstin Baier Manfred Gahrtz Ruth Stadler Jürgen Stolz Elisabeth Truernit 《Plant molecular biology》1994,26(5):1671-1679
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins. 相似文献
15.
Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems. 相似文献
16.
Summary We demonstrate that a simple kinetic model describes the transport of protons across lipid bilayer membranes by the weak acid CCCP (carbonyl cyanidem-chlorophenylhydrazone). Four parameters characterize this model: the adsorption coefficients of the anionic and neutral forms of the weak acid onto the interface (
A and
HA) and the rate constants for the movement of A– and HA across the membrane (k
A andk
HA). These parameters were determined by equilibrium dialysis, electrophoretic mobility, membrane potential, membrane conductance, and spectrophotometric measurements. From these equilibrium and steady state measurements on diphytanoyl phosphatidylcholine/chlorodecane membranes we found that
A=
HA=1.4 10-3cm,k
A=175 s–1 andk
HA=12,000 sec–1. These parameters and our model describe our kinetic experiments if we assume that the protonation reactions, which occur at the interfaces, remain at equilibrium. The model predicts a single exponential decay of the current in a voltage-clamp experimetn. The model also predicts that the decay in the voltage across the membrane following an intense current pulse of short duration (50 nsec) can be described by the sum of two exponentials. The magnitudes and time constants of the relaxations that we observed in both voltage-clamp and charge-pulse experiments agree well with the predictions of the model for all values of pH, voltage and [CCCP]. 相似文献
17.
18.
S. J. Singer J. F. Ash Lilly Y. W. Bourguignon Michael H. Heggeness Daniel Louvard 《Journal of cellular biochemistry》1978,9(3):373-389
We have made observations, by double fluorescence staining of the same cell, of the distributions of surface receptors, and of intracellular actin and myosin, on cultured normal fibroblasts and other flat cells, and on lymphocytes and other rounded cells. The binding of multivalent ligands (a lectin or specific antibodies) to a cell surface receptor on flat cells clusters the cell receptors into small patches, which line up directly over the actin- and myosin-containing stress fibers inside the cell. Similar ligands binding to rounded cells can cause their surface receptors to be collected into caps on the surface, and these caps are invariably found to be associated with concentrations of actin and myosin under the capped membrane. Although these ligand-induced surface phenomena appear to be different on flat and rounded cells, we propose that in both cases clusters of receptors become linked across the membrane to actin- and myosin-containing structures. In flat cells these structures are very long stress fibers; therefore, when clusters of receptors become linked to these fibers, the clusters are immobilized. In round cells, membrane-associated actin- and myosin-containing structures are apparently much less extensive than in flat cells; therefore, clusters of receptors linked to these structures are still mobile in the plane of the membrane. We suggest that in this case the clusters are then actively collected into a cap by an analogue of the muscle sliding filament mechanism. To explain the transmembrane linkage, we propose that actin is associated with the plasma membrane as a peripheral protein which is directly or indirectly bound to an integral protein (or proteins) X of the membrane. Individual molecules of any receptor are not bound to X, but after they are specifically clustered into patches, a patch of receptors then becomes bound to S and hence to actin/myosin. Patching and capping of specific receptors on rounded cells is often accompanied by a specific endocytosis of the ligand-receptor complexes. This represents one common transport mechanism of a protein (the ligand) across the plasma membrane. The possibility is discussed that this type of endocytosis is mediated by a transmembrane linkage of the clustered receptor to actin/myosin. Another mechanism of endocytosis involves the “coated pit” structures that are observed by electron microscopy of plasma membranes. The possible relationships between an actin/myosin and a coated pit mechanism of endocytosis are explored. 相似文献
19.
Syntheses of biomimetic low-molecular weight poly-(R)-3-hydroxybutanoate mediated by three types of supramolecular catalysts are presented. The utility of these synthetic polyesters for preparation of artificial channels in phospholipid bilayers capable of sodium and calcium ion transport across cell membranes, is discussed. Further studies on possible applications of these bio-polymers for manufacturing drugs of prolonged activity are under way. 相似文献
20.
Archaebacteria thrive in environments characterized by anaeobiosis, saturated salt, and both high and low extremes of temperature and pH. The bulk of their membrane lipids are polar, characterized by the archaeal structural features typified by ether linkage of the glycerol backbone to isoprenoid chains of constant length, often fully saturated, and with sn-2,3 stereochemistry opposite that of glycerolipids of Bacteria and Eukarya. Also unique to these bacteria are macrocyclic archaeol and membrane spanning caldarchaeol lipids that are found in some extreme thermophiles and methanogens. To define the barrier function of archaebacterial membranes and to examine the effects of these unique structural features on permeabilities, we investigated the water, solute (urea and glycerol), proton, and ammonia permeability of liposomes formed by these lipids. Both the macrocyclic archaeol and caldarchaeol lipids reduced the water, ammonia, urea, and glycerol permeability of liposomes significantly (6-120-fold) compared with diphytanylphosphatidylcholine liposomes. The presence of the ether bond and phytanyl chains did not significantly affect these permeabilities. However, the apparent proton permeability was reduced 3-fold by the presence of an ether bond. The presence of macrocyclic archaeol and caldarchaeol structures further reduced apparent proton permeabilities by 10-17-fold. These results indicate that the limiting mobility of the midplane hydrocarbon region of the membranes formed by macrocyclic archaeol and caldarchaeol lipids play a significant role in reducing the permeability properties of the lipid membrane. In addition, it appears that substituting ether for ester bonds presents an additional barrier to proton flux. 相似文献