首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Proteoglycans: structure and function   总被引:1,自引:0,他引:1  
  相似文献   

5.
Chronic diseases pose a severe burden to modern National Health Systems. Individuals nowadays have a far more extended lifespan than in the past, but healthy living was only scantily extended. As much as longer life is desirable, it is saddened by chronic diseases and organ malfunctions. One contributor to these problems was recognized to be represented by microparticles (MPs). Our purpose is to better understand MPs, to contrast their ominous threat and possible clinical importance. For this intent we correlated MPs with thrombotic pathologies, hemophilia, malaria, diabetes, cardiovascular diseases, endothelial dysfunctions, pulmonary hypertension, ischemic stroke, pre-eclampsia, rheumatologic diseases-rheumatoid arthritis, polymyositis-dermatomyositis, angiogenesis and tumor progression-cancer; we listed the possibilities of using them to improve transfusion methods, as a marker for acute allograft rejection, in stem cell transplantation, as neuronal biomarkers, to understand gender-specific susceptibility for diseases and to improve vaccination methods and we presented some methods for the detection of MPs.  相似文献   

6.
7.
Osteoblasts are mononucleated cells that are derived from mesenchymal stem cells and that are responsible for the synthesis and mineralization of bone during initial bone formation and later bone remodelling. Osteoblasts also have a role in the regulation of osteoclast activity through the receptor activator of nuclear factor κ-B ligand and osteoprotegerin. Abnormalities in osteoblast differentiation and activity occur in some common human diseases such as osteoporosis and osteoarthritis. Recent studies also suggest that osteoblast functions are compromised at sites of focal bone erosion in rheumatoid arthritis.  相似文献   

8.
LH pulsatility changes throughout the normal menstrual cycle. The number of LH pulses increases during the first days after menstruation, remains unchanged thereafter until after ovulation and declines progressively during the luteal phase. LH pulse amplitude is highest during midcycle. In hypothalamic amenorrhea, gonadotropin levels are reduced. This appears to be a consequence of a reduction of hypothalamic Gn-RH secretion which is reflected by a diminished frequency and amplitude of LH pulses during the 24-hour span. Administration of an opiate antagonist, naloxone, increases LH pulse frequency in those patients, and in patients with secondary hypothalamic amenorrhea the daily oral administration of naltrexone, another specific opiate antagonist, induces ovulatory cycles. Patients suffering from hyperandrogenemia may present with eumenorrhea, oligomenorrhea or amenorrhea. There is an increase in mean LH levels and of the LH/FSH ratio with increasing severity of the ovarian disturbance. The increase in mean LH levels is a consequence of an increase in LH pulse amplitude while LH pulse frequency is not changed compared to the early follicular phase of the menstrual cycle.  相似文献   

9.
Galectin-9 in physiological and pathological conditions   总被引:8,自引:0,他引:8  
We first cloned galectin-9 (Gal-9)/ecalectin as a T cell-derived eosinophil chemoattractant. Gal-9 plays a role in not only accumulation but also activation of eosinophils in experimental allergic models and human allergic patients, because Gal-9 induces eosinophil chemoattraction in vitro and in vivo and activates eosinophils in many aspects. Gal-9 requires divalent galactoside-binding activity but not the linker peptide of Gal-9 to exhibit its biological functions, and an unidentified matrix metalloproteinase is involved in the release of Gal-9. Our recent studies also showed that Gal-9 has other functions, such as cell differentiation, aggregation, adhesion, and death. Now, we and other groups are on the way of investigating the regulation and function of Gal-9 in a variety of physiological and pathological conditions. In this article, we will show the possible role of Gal-9 in physiological and pathological conditions by using our recent findings.  相似文献   

10.
We first cloned galectin-9 (Gal-9)/ecalectin as a T cell-derived eosinophil chemoattractant. Gal-9 plays a role in not only accumulation but also activation of eosinophils in experimental allergic models and human allergic patients, because Gal-9 induces eosinophil chemoattraction in vitro and in vivo and activates eosinophils in many aspects. Gal-9 requires divalent galactoside-binding activity but not the linker peptide of Gal-9 to exhibit its biological functions, and an unidentified matrix metalloproteinase is involved in the release of Gal-9. Our recent studies also showed that Gal-9 has other functions, such as cell differentiation, aggregation, adhesion, and death. Now, we and other groups are on the way of investigating the regulation and function of Gal-9 in a variety of physiological and pathological conditions. In this article, we will show the possible role of Gal-9 in physiological and pathological conditions by using our recent findings. Published in 2004.  相似文献   

11.
Proteoglycans in cell regulation   总被引:56,自引:0,他引:56  
  相似文献   

12.
13.
14.
Proteoglycans in haemopoietic cells   总被引:10,自引:0,他引:10  
Proteoglycans are produced by all types of haemopoietic cells including mature cells and the undifferentiated stem cells. The proteinase-resistant secretory granule proteoglycan (serglycin; Ref. 14), is the most prevalent and best characterised of these proteoglycans. Although its complete pattern of distribution in the haemopoietic system is unknown, serglycin has been identified in the mast cells, basophils and NK cells, in which secretion is regulated, and in HL-60 cells and a monocytoid cell line (Kolset, S.O., unpublished data) in which secretion is constitutive. Proteinase-resistant proteoglycans have been detected in human T-lymphocytes and murine stem cells (FDCP-mix) and the core proteins may be closely related to serglycin. A variety of glycosaminoglycan chains are assembled on the serglycin protein and it is likely that this class of proteoglycan can carry out a wide variety of functions in haemopoietic cells including the regulation of immune responses, inflammatory reactions and blood coagulation. There is strong evidence that in mast cells, NK cells and platelets, the proteoglycans are complexed to basic proteins (including enzymes and cytolytic agents) and amines in secretory granules and such complexes may dissociate following secretion from the cell. The stability of the complexes may be regulated by the ambient pH which may be acidic in the granules and neutral or above in the external medium. However, proteinase-proteoglycan complexes in mast cell granules seem to remain stable after secretion and it has been proposed that the proteoglycan regulates activity of proteinases released into the pericellular domain. The functions of proteoglycans which are constitutively secreted from cells are less clear. If cells have no requirement for storage of basic proteins why do they utilise the same design of proteoglycan as cells which accumulate secretory material prior to regulated release? We should stress that the so-called constitutive secretory pathway has been identified in haemopoietic cells in culture, which are usually maintained and grown in the presence of mitogenic factors (e.g., IL-2, IL-3). the cells are therefore activated and it has not been established that continuous proteoglycan secretion occurs in quiescent cells circulating in the peripheral blood. It is possible that lymphocytes, monocytes and macrophages, in which the constitutive secretion pathway operates in vitro, may store proteoglycan in vivo unless stimulated by mitogens or other activating agents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Chemokines are small, secreted proteins that orchestrate the migration of cells, which are involved in immune defence, immune surveillance and haematopoiesis. However, chemokines are also implicated in the pathology of various inflammatory diseases, cancers and HIV. The chemokine system is considerably large and has a redundancy in the repertoire of its inflammatory mediators. Therefore, strict regulation of chemokine activity is crucial. Chemokines are the substrate for various proteases including the serine protease CD26/dipeptidyl-peptidase IV and matrix metalloproteinases. Regulation by proteolytic cleavage controls and fine-tunes chemokine function by either enhancing or reducing its chemotactic activity or receptor selectivity. Often chemokines and the proteases that regulate them are produced in the same microenvironment and expression of both may be simultaneously induced by a common stimulus enabling the rapid regulation of chemokine activity. The overall impact of cleaved chemokines in cellular responses is very complex. In this review, we will give an overview on chemokine modification and the respective chemokine modifying proteases. Furthermore, we will summarize the emerging literature describing the consequences in inflammation, haematopoiesis, cancer and HIV infection upon proteolytic chemokine processing.  相似文献   

16.
Proteoglycans in brain development   总被引:4,自引:0,他引:4  
Proteoglycans, as part of the extracellular or cell-surface milieu of most tissues and organ systems, play important roles in morphogenesis by modulating cell-matrix or cell-cell interactions, cell adhesiveness, or by binding and presenting growth and differentiation factors. Chondroitin sulfate proteoglycans which constitute the major population of proteoglycans in the central nervous system may influence formation of neuronal nuclei, establishment of boundaries for axonal growth and act as modulators of neuronal outgrowth during brain development, as well as during regeneration after injury. There is a paucity of information on the role of chondroitin sulfate proteoglycans in central nervous system organogenesis. In the chick embryo, aggrecan has a regionally specific and developmentally regulated expression profile during brain development. By Northern and Western blot analysis, aggrecan expression is first detected in chick brain on embryonic day 7 (E7), increases from E7 to E13, declines markedly after E16, and is not evident in hatchling brains. The time course and pattern of aggrecan expression observed in ventricular zone cells suggested that it might play a role in gliogenesis. We have analyzed the role of aggrecan during brain development using a aggrecan-deficient model, nanomelia. In nanomelic chicks, expression and levels of neurocan and brevican is not affected, indicating a non-redundant role for these members of the aggrecan gene family. Our analysis of the aggrecan-deficient model found a severely altered phenotype which affects cell behavior in a neuronal culture paradigm and expression of astrocytic markers in vivo . Taken together our results suggest a function for aggrecan in the specification of a sub-set of glia precursors that might give rise to astrocytes in vivo.  相似文献   

17.
18.
The diversity of bone proteoglycan (PG) structure and localisation (pericellular, extracellular in the organic bone matrix) reflects a broad spectrum of biological functions within a unique tissue. PGs play important roles in organizing the bone extracellular matrix, taking part in the structuring of the tissue itself as active regulators of collagen fibrillogenesis. PGs also display selective patterns of reactivity with several constituents including cytokines and growth factors, such as transforming growth factor-beta or osteoprotegerin thereby modulating their bio-availability and biological activity in the bone tissue. In this review, the complex PG composition in bone will be addressed together with the specific role played by PGs (or their GAGs chains) in bone biology, as regulatory molecules for bone resorption and their involvement in bone tumor development. These roles have been determined after modulation of PG expression or mutations in their corresponding genes, which revealed specific roles for these compounds in bone pathologies (e.g. perlecan or glypican-3 mutations observed respectively in chondrodysplasia or dysmorphic syndrome). Finally, the potential therapeutic interest of PGs is discussed based on recent data, more particularly on bone tumor-associated osteolysis as these molecules are involved both in bone resorption and tumor development.  相似文献   

19.
异常活化的小胶质细胞的特征与功能   总被引:4,自引:0,他引:4  
神经系统的各种损伤均可以引起小胶质细胞的激活.小胶质细胞是神经系统中发挥免疫功能的细胞,与T淋巴细胞、B淋巴细胞、自然杀伤细胞,以及其他的循环系统来源的白细胞共同参与神经损伤后的免疫反应.一般情况下,激活的小胶质细胞可以中止或者降低受累组织或细胞的生化代谢紊乱.但是持续激活的小胶质细胞释放的大量炎性因子能够对正常组织造成损害,加重神经损伤.关于小胶质细胞激活的病理生理学研究在最近几年取得较大进展,本文将主要介绍小胶质细胞在病理情况下激活的过程、特征,以及激活后发挥的功能及其调节机制.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号