首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The distribution of cytokinin-active ribonucleosides in tRNA species from etiolated Phaseolus vulgaris L. seedlings has been examined. Phaseolus tRNA was fractionated by benzoylated diethylaminoethyl-cellulose and RPC-5 chromatography, and the distribution of cytokinin activity was compared with the distribution of tRNA species expected to correspond to codons beginning with U. Phaseolus tRNACys, tRNATrp, tRNATyr, a major peak of tRNAPhe, and a large fraction of tRNALeu were devoid of cytokinin activity in the tobacco bioassay. Cytokinin activity was associated with all fractions containing tRNASer species and with minor tRNALeu species. In addition, several anomalous peaks of cytokinin activity that could not be directly attributed to U group tRNA species were detected.  相似文献   

2.
3.
Three isoaccepting forms of leucyl transfer RNA in mitochondria   总被引:2,自引:0,他引:2  
  相似文献   

4.
tRNA isopentenyltransferases (Tit1) modify tRNA position 37, adjacent to the anticodon, to N6-isopentenyladenosine (i6A37) in all cells, yet the tRNA subsets selected for modification vary among species, and their relevance to phenotypes is unknown. We examined the function of i6A37 in Schizosaccharomyces pombe tit1+ and tit1-Δ cells by using a β-galactosidase codon-swap reporter whose catalytic activity is sensitive to accurate decoding of codon 503. i6A37 increased the activity of tRNACys at a cognate codon and that of tRNATyr at a near-cognate codon, suggesting that i6A37 promotes decoding activity generally and increases fidelity at cognate codons while decreasing fidelity at noncognate codons. S. pombe cells lacking tit1+ exhibit slow growth in glycerol or rapamycin. While existing data link wobble base U34 modifications to translation of functionally related mRNAs, whether this might extend to the anticodon-adjacent position 37 was unknown. Indeed, we found a biased presence of i6A37-cognate codons in high-abundance mRNAs for ribosome subunits and energy metabolism, congruent with the observed phenotypes and the idea that i6A37 promotes translational efficiency. Polysome profiles confirmed the decreased translational efficiency of mRNAs in tit1-Δ cells. Because subsets of i6A37-tRNAs differ among species, as do their cognate codon-sensitive mRNAs, these genomic variables may underlie associated phenotypic differences.  相似文献   

5.
Translation termination at UAG is influenced by the nature of the 5′ flanking codon inEscherichia coli. Readthrough of the stop codon is always higher in a strain with mutant (prfA1) as compared to wild-type (prfA+) release factor one (RF1). Isocodons, which differ in the last base and are decoded by the same tRNA species, affect termination at UAG differently in strains with mutant or wild-type RF1. No general preference of the last codon base to favour readthrough or termination can be found. The data suggest that RF1 is sensitive to the nature of the wobble base anticodon-codon interaction at the ribosomal peptidyl-tRNA binding site (P-site). For some isoaccepting P-site tRNAs (tRNA3ProversustRNA2Pro, tRNA4ThrversustRNA1,3Thr) the effect is different on mutant and wild-type RF1, suggesting an interaction between RF1 at the aminoacyl-tRNA acceptor site (A-site) and the P-site tRNA itself. The glycine codons GGA (tRNA2Gly) and GGG (tRNA2,3Gly) at the ribosomal P-site are associated with an almost threefold higher readthrough of UAG than any of the other 42 codons tested, including the glycine codons GGU/C, in a strain with wild-type RF1. This differential response to the glycine codons is lost in the strain with the mutant form of RF1 since readthrough is increased to a similar high level for all four glycine codons. High α-helix propensity of the last amino acid residue at the C-terminal end of the nascent peptide is correlated with an increased termination at UAG. The effect is stronger on mutant compared to wild-type RF1. The data suggest that RF1-mediated termination at UAG is sensitive to the nature of the codon-anticodon interaction of the wobble base, the last amino acid residue of the nascent peptide chain, and the tRNA at the ribosomal P-site.  相似文献   

6.
Codon-anticodon recognition and transfer RNA utilization for the leucine tRNA isoaccepting species of Escherichia coli have been studied by protein synthesis in vitro directed by sequenced bacteriophage MS2 RNA. We have added radioactive Leu-tRNALeu isoaccepting species as tracers, rather than use a tRNA-dependent system, since in the presence of an excess of non-radioactive leucine, there is no transfer of radioactive leucine from one isoaccepting species to another. MS2-specific peptides containing leucine residues encoded by known codons were isolated and identified, and the relative abilities of the Leu-tRNALeu isoaccepting species to transfer leucine into these peptides compared. Sequenced tRNA1Leu and sequenced tRNA3Leu are of roughly equal efficiency in their ability to recognize CUC and CUA codons, while tRNA3Leu is highly preferred for the CUU codon; tRNA4Leu and tRNA5Leu both recognize UUA and UUG codons, with tRNA4Leu slightly preferred for the UUA codon. We conclude that: (1) wobble is greater than permitted by the wobble hypothesis; (2) there is still some discrimination in the third code letter, and that the CUX4 (CUC, CUA, CUU, CUG) portion of the leucine family of six codons is not read by a simple “two out of three” mechanism; (3) a Watson-Crick pair (C · G) between codon and anticodon does not appear to be preferred over an unorthodox pair (C · C) in the wobble position; (4) a standard wobble pair (U · G) between codon and anticodon is preferred over an unorthodox pair (U · C); and (5) the extensive wobble observed in the CUX4 leucine codon series is not paralleled in the UUX4 leucine (UUG, UUA) and phenylalanine (UUU, UUC) codon series, where mistranslation would be the consequence of such wobble.  相似文献   

7.
Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2Ile to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNAIle-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2Ile is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1Ile, in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain.  相似文献   

8.
Endogenous cytokinins in the ribosomal RNA of higher plants   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous cytokinin-active ribonucleosides were isolated from the rRNA and tRNA of pea epicotyls (Pisum sativum L., var Alaska) and of wheat germ (Triticum aestivum). The RNA preparations were analyzed for cytokinins by enzymic hydrolysis, ethyl acetate extraction, and Sephadex LH-20 fractionation in several solvents. Tentative identification of the cytokinins was based on cochromatography with synthetic cytokinin standards in several systems and on activity in the tobacco bioassay. Both the rRNA and tRNA from 10 day old pea epicotyls contained ribosylzeatin, isopentenyladenosine, and 2-methylthioribosylzeatin. The latter compound was the most active fraction in the pea rRNA, but was the least active fraction in the tRNA, where isopentenyladenosine activity was predominant. The 2-methylthioribosylzeatin from pea rRNA was identified by gas chromatography-mass spectrometry. Wheat germ rRNA contained cis and trans ribosylzeatin and 2-methylthioribosylzeatin. The tRNA contained isopentenyladenosine in addition. The specific cytokinin activity (activity per A260 unit) of the tRNA was over forty times that of the rRNA. Significant contamination of the rRNA preparations by cytokinin-containing tRNA is considered unlikely on the basis of quantitative differences in the cytokinin content of the rRNA and tRNA preparations, electrophoretic analysis of rRNA purity and cytokinin analysis of fractionated oligonucleotide digests.  相似文献   

9.
Transfer RNAs (tRNA) are important molecules that involved in protein translation machinery and acts as a bridge between the ribosome and codon of the mRNA. The study of tRNA is evolving considerably in the fields of bacteria, plants, and animals. However, detailed genomic study of the cyanobacterial tRNA is lacking. Therefore, we conducted a study of cyanobacterial tRNA from 61 species. Analysis revealed that; cyanobacteria contain thirty-six to seventy-eight tRNA gens per genome that encodes for 20 tRNA isotypes. The number of iso-acceptors (anti-codons) ranged from thirty-two to forty-three per genome. tRNAIle with anti-codon AAU, GAU, and UAU was reported to be absent from the genome of Gleocapsa PCC 73,106 and Xenococcus sp. PCC 7305. Instead, they were contained anti-codon CAU that is common to tRNAMet and tRNAIle as well. The iso-acceptors ACA (tRNACys), ACC (tRNAGly), AGA, ACU (tRNASer), AAA (tRNAPhe), AGG (tRNAPro), AAC (tRNAVal), GCG (tRNAArg), AUG (tRNAHis), and AUC (tRNAAsp) were absent from the genome of cyanobacterial lineages studied so far. A few of the cyanobacterial species encode suppressor tRNAs, whereas none of the species were found to encode a selenocysteine iso-acceptor. Cyanobacterial species encode a few putative novel tRNAs whose functions are yet to be elucidated.  相似文献   

10.
Methods for the preparation of an Escherichia coli tRNA mixture lacking one or a few specific tRNA species can be the basis for future applications of cell-free protein synthesis. We demonstrate here that virtually a single tRNA species in a crude E. coli tRNA mixture can be knocked out by an antisense (complementary) oligodeoxyribonucleotide. One out of five oligomers complementary to tRNAAsp blocked the aspartylation almost completely, while minimally affecting the aminoacylation with other 13 amino acids tested. This `knockout' tRNA behaved similarly to the untreated tRNA in a cell-free translation of an mRNA lacking Asp codons.  相似文献   

11.
Two of the six leucine isoaccepting tRNA species from soybean (Glycine max) cotyledons recognize U-beginning codons, and contain cytokinin moieties in their structure. These same two isoaccepting species have been shown to undergo quantitative changes in their relative amounts upon treatment with N6-benzyladenine in vivo. In addition a procedure has been developed for purification of the isoaccepting species of leucine tRNA from soybean cotyledons resulting in isoacceptors of minimum purity, calculated by amino acid acceptance capacity, of from 46 to 78% leucine tRNA.  相似文献   

12.
Increased expression of the CCU/CCA/CCG-decoding tRNAPro3 on a multicopy plasmid leads to suppression of several +1 frameshift mutations in Salmonella enterica serovar Typhimurium. Systematic analysis of the site of frameshifting indicates that excess tRNAPro3 promotes near-cognate decoding at CCC codons. Re-phasing of the reading frame can be achieved by a subsequent slippage of the tRNA onto a cognate codon in the +1 reading frame. Frameshifting appears to be due to an imbalance of CCC-cognate and near-cognate tRNAs, as the effect of excess tRNAPro3 on reading frame maintenance can be reversed by increasing simultaneously the concentration of the cognate tRNAPro2. Finally, the cmo5U modification present at position 34 of tRNAPro3, which allows this tRNA to decode CCU in addition to CCG and CCA, also affects frameshifting, indicating that the ability of the near-cognate tRNA to decode a cognate codon efficiently in the alternative reading frame is important for re-phasing of the reading frame.  相似文献   

13.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   

14.
Analysis of purified tRNA species by polyacrylamide gel electrophoresis   总被引:5,自引:0,他引:5  
Six purified amino acid acceptor tRNA species were examined by polyacrylamide gel electrophoresis. Small differences in migration were observed under conditions that preserve the conformation of tRNA. When tRNA was heated in the presence of either 10 mM acetate or EDTA at 60° a change in migration was observed for tRNAGlu. No difference in migration was seen between Val-tRNAVal and tRNAVal. When tRNA was denatured by heating in 4M urea and applied to a gel containing the same amount of urea, all tRNA species migrated approximately the same distance with the exception of tRNALeu V, which showed an appreciable slower migration. From the difference in migration of tRNALeu V as compared to tRNAVal and 5 S RNA, the difference in chain length between tRNAVal and tRNALeu V was estimated to be approximately 9 nucleotides.  相似文献   

15.
16.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

17.
A combination of hydrophobic chromatography on phenyl-Sepharose and reversed phase HPLC was used to purify individual tRNAs with high specific activity. The efficiency of chromatographic separation was enhanced by biochemical manipulations of the tRNA molecule, such as aminoacylation, formylation of the aminoacyl moiety and enzymatic deacylation. Optimal combinations are presented for three different cases. (i) tRNAPhe from Escherichia coli. This species was isolated by a combination of low pressure phenyl-Sepharose hydrophobic chromatography with RP-HPLC. (ii) tRNAIle from E.coli. Aminoacylation increases the retention time for this tRNA in RP-HPLC. The recovered acylated intermediate is deacylated by reversion of the aminoacylation reaction and submitted to a second RP-HPLC run, in which deacylated tRNAIle is recovered with high specific activity. (iii) tRNAiMet from Saccharomyces cerevisiae. The aminoacylated form of this tRNA is unstable. To increase stability, the aminoacylated form was formylated using E.coli enzymes and, after one RP-HPLC step, the formylated derivative was deacylated using peptidyl-tRNA hydrolase from E.coli. The tRNAiMet recovered after a second RP-HPLC run exhibited electrophoretic homogeneity and high specific activity upon aminoacylation. These combinations of chromatographic separation and biochemical modification can be readily adapted to the large-scale isolation of any particular tRNA.  相似文献   

18.
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNAOpt. We suspected a modification of the tRNAOptAUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNAOptAUG is converted to inosine. We identified tRNAOptAUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms.  相似文献   

19.
20.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号