首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Engineering the sialic acid in organs of mice using N-propanoylmannosamine   总被引:1,自引:0,他引:1  
Sialic acids play an important role during development, regeneration and pathogenesis. The precursor of most physiological sialic acids, such as N-acetylneuraminic acid is N-acetyl-D-mannosamine. Application of the novel N-propanoylmannosamine leads to the incorporation of the new sialic acid N-propanoylneuraminic acid into cell surface glycoconjugates. Here we analyzed the modified sialylation of several organs with N-propanoylneuraminic acid in mice. By using peracetylated N-propanoylmannosamine, we were able to replace in vivo between 1% (brain) and 68% (heart) of physiological sialic acids by N-propanoylneuraminic acid. The possibility to modify cell surfaces with engineered sialic acids in vivo offers the opportunity to target therapeutic agents to sites of high sialic acid concentration in a variety of tumors. Furthermore, we demonstrated that application of N-propanoylmannosamine leads to a decrease in the polysialylation of the neural cell adhesion molecule in vivo, which is a marker of poor prognosis for some tumors with high metastatic potential.  相似文献   

2.
Derivatives of N-acyl-D-mannosamine differing in the N-acyl-side chain can be metabolically converted into neuraminic acids with corresponding N-acyl side chains. In the present study we show the in vivo modulation of sialic acids in membrane-bound dipeptidyl peptidase IV (CD 26) from rat liver after administration of N-propanoyl-D-mannosamine. Treatment of rats with this unphysiological precursor resulted in an incorporation of N-propanoylneuraminic acid into N-linked glycans of dipeptidyl peptidase IV.  相似文献   

3.
The sialic acids are a family of nine carbon alpha-keto acids that play a wide variety of biological roles in nature. In mammals, they are found at the distal ends of cell surface glycoconjugates, and thus are major determinants of cellular recognition and adhesion events. In certain strains of pathogenic bacteria, they are found in capsular polysaccharides that mask the organism from the immune system by mimicking the exterior of a mammalian cell. This review outlines recent developments in the understanding of the two main enzymes responsible for the biosynthesis of the sialic acid, N-acetylneuraminic acid. The first, a hydrolyzing UDP-N-acetylglucosamine 2-epimerase, generates N-acetylmannosamine and UDP from UDP-N-acetylglucosamine. The second, sialic acid synthase, generates either N-acetylneuraminic acid (bacteria) or N-acetylneuraminic acid 9-phosphate (mammals) in a condensation reaction with phosphoenolpyruvate. An emphasis is placed on an understanding of the mechanistic and structural features of these enzymes.  相似文献   

4.
Sialylation of glycoconjugates is essential for mammalian cells. Sialic acid is synthesized in the cytosol from N-acetylmannosamine by several consecutive steps. Using N-propanoylmannosamine, a novel precursor of sialic acid, we are able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into glycoconjugates taking advance of the cellular sialylation machinery. Here, we report that unnatural sialylation of HL60-cells leads to an increased release of intracellular calcium after application of thapsigargin, an inhibitor of SERCA Ca2+-ATPases. Furthermore, this increased intracellular calcium concentration leads to an increased adhesion to fibronectin. Finally, we observed an increase of the lectin galectin-3, a marker of monocytic differentiation of HL60-cells.  相似文献   

5.
Sialic acids are critical components of many glycoconjugates involved in biologically important ligand-receptor interactions. Quantitative and structural variations of sialic acid residues can profoundly affect specific cell-cell, pathogen-cell, or drug-cell interactions, but manipulation of sialic acids in mammalian cells has been technically limited. We describe the finding of a previously unrecognized and efficient uptake and incorporation of sialic acid analogues in mammalian cells. We added 16 synthetic sialic acid analogues carrying distinct C-1, C-5, or C-9 substitutions individually to cell cultures of which 10 were readily taken up and incorporated. Uptake of C-5- and C-9-substituted sialic acids resulted in the structural modification of up to 95% of sialic acids on the cell surface. Functionally, binding of murine sialic acid-binding immunoglobulin-like lectin-2 (Siglec-2, CD22) to cells increased after N-glycolylneuraminic acid treatment, whereas 9-iodo-N-acetylneuraminic acid abolished binding. Furthermore, susceptibility to infection by the B-lymphotropic papovavirus via a sialylated receptor was markedly enhanced following pretreatment of host cells with selected sialic acid analogues including 9-iodo-N-acetylneuraminic acid. This novel experimental strategy allows for an efficient biosynthetic engineering of surface sialylation in living cells. It is versatile, extending the repertoire of modification sites at least to C-9 and enables detailed structure-function studies of sialic acid-dependent ligand-receptor interactions in their native context.  相似文献   

6.
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.  相似文献   

7.
Sialic acids are expressed as terminal sugars in many glycoconjugates and play an important role during development and regeneration, as they are involved as polysialic acid in a variety of cell-cell interactions mediated by the neural cell adhesion molecule NCAM. The key enzyme for the biosynthesis of sialic acid is the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine-kinase (GNE). Mutations in the binding site of the feedback inhibitor CMP-sialic acid of the GNE leads to sialuria, a disease in which patients produce sialic acid in gram scale. Here, we report on the consequences after expression of a sialuria-mutated GNE. Expression of the sialuria-mutated GNE leads to a dramatic increase of both cellular sialic acid and polysialic acid on NCAM. This could also be achieved by application of the sialic acid precursor N-acetylmannosamine. Our data suggest that biosynthesis of sialic acid regulates and limits the synthesis of polysialic acid.  相似文献   

8.
N-Propanoylmannosamine is an unnatural precursor of sialic acid, which is taken up by a variety of animal cells and metabolized to N-propanoylneuraminic acid. In several studies it has been demonstrated that application of unnatural precursors of sialic acids such as N-propanoylmannosamine (ManNProp) and homologues interfere with cell differentiation and proliferation of neuronal cells or embryonic stem cells. Since the function of the immune system is known to rely on the presence of sialic acid, we applied ManNProp to human peripheral blood mononuclear cells (PBMC). When culturing those lymphocytes with ManNProp 10 % of the natural sialic acid N-acetylneuraminic acid could be replaced by the newly formed N-propanoylneuraminic acid. This procedure resulted (a) in a marked stimulation in the rate of proliferation of PBMC, (b) a 10-fold increase of IL-2 production coupled with an up-regulation of its receptor CD25 on the cell surface and (c) a concomitant expression and regulation of the transferrin receptor with cell growth. The stimulation of PBMC by ManNProp might therefore introduce a new approach of immunomodulation.  相似文献   

9.
The biological half-life time of many glycoproteins is regulated via terminal sialic acids. In this study we determined the half-lives of two different cell adhesion molecules, CEACAM1 and the alpha1-integrin subunit, in PC12-cells before and after biochemical engineering the side chain of sialic acids by the use of N-propanoylmannosamine. Both are transmembrane glycoproteins. While the immunoglobulin superfamily member CEACAM1 mediates homophilic cell-cell adhesion the alpha1-integrin subunit is involved in cell-matrix interactions. We found that the half-life of the highly sialylated CEACAM1 is increased from 26 to 40 h by replacement of the N-acetylneuraminic acid by the novel, engineered N-propanoylneuraminic acids, whereas the half-life of the alpha1-integrin subunit remains unaffected under the same conditions. This demonstrates that biochemical engineering not only modulates the structure of cell surface sialic acids, but that biochemical engineering also influences biological stability of defined glycoproteins.  相似文献   

10.
Sialylation of glycoproteins and glycolipids plays an important role during development, regeneration and pathogenesis. It has been shown that unnatural sialylation within glial cell cultures can have distinct effects on their proliferation and antigenic profiles. These cultures metabolize N-propanoylmannosamine (N-propanoylneuraminic acid precursor=P-NAP), a synthetic non-physiological precursor of neuraminic acid, resulting in the expression of N-propanoylneuraminic acid in glycoconjugates of their cell membranes [Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W. and Horstkorte, R. (1998) J. Biol. Chem. 273, 19146-19152]. To determine whether these biochemically engineered sialic acids influence calcium concentrations in cells of the oligodendrocyte lineage, mixed glial cultures of oligodendrocytes growing on top of an astrocyte monolayer were exposed to glutamate, histamine, adrenaline, gamma-aminobutyric acid (GABA), high potassium (high K(+)) and ATP. Calcium responses in P-NAP-treated oligodendrocytes were determined by confocal microscopy with the calcium indicator fluo-3 AM, and compared with control cultures. We showed that P-NAP differentially modulated the calcium responses of individual oligodendrocytes when GABA was applied. GABA induced calcium oscillations with up to four spikes per min in 60% of oligodendrocytes when treated with P-NAP.  相似文献   

11.
Pon RA  Biggs NJ  Jennings HJ 《Glycobiology》2007,17(3):249-260
The inherent promiscuity of the polysialic acid (PSA) biosynthetic pathway has been exploited by the use of exogenous unnatural sialic acid precursor molecules to introduce unnatural modifications into cellular PSA, and has found applications in nervous system development and tumor vaccine studies. The sialic acid precursor molecules N-propionyl- and N-butanoyl-mannosamine (ManPr, ManBu) have been variably reported to affect PSA biosynthesis ranging from complete inhibition to de novo production of modified PSA, thus illustrating the need for further investigation into their effects. In this study, we have used a monoclonal antibody (mAb) 13D9, specific to both N-propionyl-PSA and N-butanoyl-PSA (NPrPSA and NBuPSA), together with flow cytometry, to study precursor-treated tumor cells and NT2 neurons at different stages of their maturation. We report that both ManPr and ManBu sialic acid precursors are metabolized and the resultant unnatural sialic acids are incorporated into de novo surface sialylglycoconjugates in murine and human tumor cells and, for the first time, in human NT2 neurons. Furthermore, neither precursor treatment deleteriously affected endogenous PSA expression; however, with NT2 cells, PSA levels were naturally downregulated as a function of their maturation into polarized neurons independent of sialic acid precursor treatment.  相似文献   

12.
N-Acetylmannosamine (ManNAc) is the physiological precursors to all sialic acids that occur in nature. As variations in the sialic acid decoration of cell surfaces can profoundly affect cell-cell, pathogen-cell, or drug-cell interactions, the enzymes that convert ManNAc into sialic acid are attractive targets for the development of drugs that specifically interrupt sialic acid biosynthesis or lead to modified sialic acids on the surface of cells. The first step in the enzymatic conversion of ManNAc into sialic acid is phosphorylation, yielding N-acetylmannosamine-6-phosphate. The enzyme that catalyzes this conversion is the N-acetylmannosamine kinase (ManNAc kinase) as part of the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Here, we employed saturation transfer difference (STD) NMR experiments to study the binding of ManNAc and related ligands to the ManNAc kinase. It is shown that the configuration of C1 and C4 of ManNAc is crucial for binding to the enzyme, whereas the C2 position not only accepts variations in the attached N-acyl side chain but also tolerates inversion of configuration. Our experiments also show that ManNAc kinase maintains its functionality, even in the absence of Mg(2+). From the analysis of the STD NMR-derived binding epitopes, it is concluded that the binding mode of the N-acylmannosamines critically depends on the N-acyl side chain. In conjunction with the relative binding affinities of the ligands obtained from STD NMR titrations, it is possible to derive a structure-binding affinity relationship. This provides a cornerstone for the rational design of drugs for novel therapeutic applications by altering the sialic acid decorations of cell walls.  相似文献   

13.
Sialic acids are the most abundant terminal carbohydrate moiety on cell surface glycoconjugates in eukaryotic cells and are of functional importance for many biological ligand-receptor interactions. It is a widely accepted view that sialic acids cannot be efficiently taken up from the extracellular space by eukaryotic cells. To test this assumption, we cultivated two recently identified human hematopoetic cell lines which are hyposialylated due to a deficiency in de novo sialic acid biosynthesis in the presence of N-acetylneuraminic acid (NeuAc), the most frequently found sialic acid. Surprisingly, NeuAc medium supplementation rapidly and potently compensated for the endogenous hyposialylation in a concentration-dependent manner, resulting in the presentation of cell surface sialoglycans involved in cell adhesion, virus infection and signal transduction. We provide several lines of experimental evidence that all suggest that NeuAc was neither extracellularly incorporated nor degraded to a less complex sugar before uptake. Importantly, NeuAc induced a marked increase in intracellular CMP-NeuAc levels in both human cell lines and in primary cells regardless of the prior sialylation status of the cells. Studies employing 9-[3H]NeuAc revealed an uptake consistent with the observed incorporation of unlabeled NeuAc. We propose the existence of an efficient uptake mechanism for NeuAc in eukaryotic cells.  相似文献   

14.
Cytochalasin B and the sialic acids of Ehrlich ascites cells   总被引:3,自引:0,他引:3  
The effect of cytochalasin B (CB) on the electrophoretic mobility and density of ionized sialic acid groups at the surface of Ehrlich ascites cells was examined together with a biochemical assay of the total sialic acid content of treated and control cells. Sialic acid assays indicated that CB-treated cells had a greater amount of total sialic acid and sialic acid sensitive to neuraminidase than control cells/cell. Equal amounts of sialic acid were removable by neuraminidase treatment from control cells and cells pretreated with neuraminidase and subsequently cultured with CB. The electrophoresis results showed a decrease in electrophoretic mobility in the presence of CB which could be reversed by growth in CB-free medium. Neuraminidase treatment did not make a significant additional reduction in the mobility of CB-treated cells. CB also prevented the recovery of electrophoretic mobility of neuraminidase treated cells. The results suggest that while CB does not inhibit sialic acid synthesis, it does alter the expression of ionized sialic acid groups at the electrokinetic surface. CB-containing culture media could be re-utilized several times suggesting that CB is not significantly bound or metabolized by Ehrlich ascites cells.  相似文献   

15.
1. The sialic acid content of fresh and fixed Ehrlich ascites cells was determined by incubation with neuraminidase and analysis of the supernatants. 2. The content of sialic acid was also determined on ultrasonically disrupted cells either with or without prior neuraminidase treatment, and the location of sialic acid in the cell is discussed. 3. The sialic acids, cleaved from cells by neuraminidase, were identified chromatographically. 4. Proteolytic enzymes were used to isolate from cells a mucopeptide containing sialic acid and galactosamine in almost equimolar proportions. 5. The nature of the carbohydrate-amino acid bond in the muco-peptide was investigated by alkaline hydrolysis. 6. A suggestion is made about the particular amino acids involved in the sugar-peptide bond.  相似文献   

16.
Metabolism of sialic acid in regenerating rat liver.   总被引:2,自引:2,他引:0       下载免费PDF全文
In regenerating rat liver slices 24 h after partial hepatectomy, the incorporation of [1-14C]glucosamine into 'free sialic acid' (N-acetylneuraminic acid + CMP-N-acetylneuraminic acid) decreased to below 50% of the control values and the incorporation into protein-bound sialic acid decreased to the same extent. The incorporation of [14C]glucosamine into 'free sialic acid' decreased during the period from 6 to 47 h after hepatectomy, showing a minimum at 12 h, and recovered to the control value by 96 h. At 12 h, the activities of UDP-N-acetylglucosamine 2-epimerase (UDP-2-acetoamido-2-deoxy-D-glucose 2-epimerase, EC 5.1.3.14) and N-acyl-D-mannosamine kinase (ATP: 2-acylamino-2-deoxy-D-mannose 6-phosphotransferase, EC 2.7.1.60) in the liver were significantly decreased. The amount of protein-bound sialic acid in the liver was not changed after partial hepatectomy, but the amount in plasma was changed, with a similar pattern to that of the incorporation of [14C]glucosamine into slice 'free sialic acid'. These results indicate that the synthesis of sialic acid in the liver much decreases in the early stage of regeneration and that this may be correlated with the decreased synthesis of plasma sialoglycoproteins.  相似文献   

17.
Determination of sialic acids in milks and milk-based products   总被引:1,自引:0,他引:1  
Sialic acids are becoming recognized as important components of milk-based products for infants and young children. As such, many companies now label the sialic acid content of their products. To control the labeling, suitable methods are required for this analysis. The objective of this work was to set up a rapid and sensitive method for the determination of the two most commonly occurring sialic acids, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), using high-performance liquid chromatography (HPLC). The sialic acids were released from their parent oligosaccharides, glycoproteins, or glycolipids by mild acid hydrolysis using formic acid. They were then derivatized using 1,2-diamino-4,5-methylenedioxybenzene (DMB) and subsequently separated on a Zorbax SB-Aq Rapid Resolution column in less than 2 min. The method developed was validated on various milk-based products and ingredients containing sialic acid at levels from 0.3 to 900 mg/100 g. Spiking experiments indicate that the sialic acid recoveries ranged from 87% to 108%. The expanded measurement uncertainty was typically below 15% for Neu5Gc and typically below 10% for Neu5Ac or the sum of the sialic acids, with a few exceptions. The proposed method is fast, specific, and easy to set up for compliance analysis in a routine laboratory.  相似文献   

18.
Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in β-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.  相似文献   

19.
Glutardialdehyde-fixed or native rat erythrocytes were partially desialylated by the action of Vibrio cholerae sialidase, resulting in the binding of these cells to homologous peritoneal macrophages. Resialylation of these erythrocytes by purified alpha-(2----3)- or alpha-(2----6)-sialyltransferases with CMP-N-acetylneuraminic acid led to the incorporation of 60-80% of the enzymically released sialic acid. Binding of the resialylated erythrocytes to peritoneal macrophages was reduced when compared with corresponding, partially desialylated erythrocytes. Thus, the amount of transferred sialic acid was sufficient to demonstrate reconstitution of the masking effect of sialic acids.  相似文献   

20.
Purified rat liver lysosomes were incubated in 0.2 M sialic acid resulting in an increase in lysosomal free sialic acid of 3.8 +/- 1.5 nmol/unit beta hexosaminidase. Sialic acid loss by these lysosomes was stimulated 2-3 fold by 25 mM sodium phosphate. Loss of sialic acid by lysosomes from cultured human diploid fibroblasts was similar to that observed in rat liver lysosomes while loss of sialic acid by lysosomes from cultured fibroblasts from a patient with infantile Salla disease occurred much more slowly. Salla disease appears to be the consequence of defective lysosomal transport of sialic acid and is analogous to cystinosis, a disorder of lysosomal amino acid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号