首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Octylglucopyranoside (OCTG) was three times more efficient than 3-[(3-cholamidopropyl)-dimethylammonio] 1-propanesulfonate (CHAPS) in solubilizing the benzodiazepine (BDZ)/γ-aminobutyric acid (GABA) receptor complex from rat cerebellar synaptic membranes. OCTG-solubilized receptor preparations had ligand binding characteristics that were significantly different from those of the CHAPS-solubilized receptors. The inclusion of phospholipids in the solubilization media improved the binding characteristics of both soluble receptor preparations and appeared absolutely necessary for the maintenance of chloride facilitation of flunitrazepam (FNZ) binding to OCTG-solubilized receptors. FNZ and ethyl-β-carboline-3-carboxylate bound to OCTG-solubilized preparations with equilibrium dissociation constants of 2.2 nM and 1.6 nM, respectively, and chloride (150 mM) and GABA (100 μM) + chloride facilitated the binding of FNZ by 15% and 55%, respectively; these ligand binding characteristics are similar to those of membrane-located BDZ receptors. Cartazolate, a pyrazolopyridine that facilitated the binding of FNZ to membrane-located and CHAPS-solubilized receptors, did not facilitate FNZ binding to OCTG-solubilized receptors. These results are discussed in terms of an interaction between the membrane lipid phosphatidylserine (PS) and cartazolate; PS appears to have the capacity to inhibit the effects of cartazolate on FNZ binding. Storage of the soluble receptor preparations for 24 h at 4° resulted in the loss of several characteristic BDZ receptor binding properties. Incorporation of the OCTG-solubilized receptor complex into liposomes prevented these losses but this procedure did not protect the CHAPS-solubilized receptors. We conclude that OCTG may have some advantages over CHAPS as the detergent of choice for the solubilization and reconstitution in liposomes of a functional BDZ/GABA receptor-chloride ionophore complex.  相似文献   

2.
We have solubilised the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor from rat cerebellum using 3-[(3-cholamidopropyl)dimethylammonio] 1-propane sulphonate (CHAPS) in the presence of a natural brain lipid extract and cholesteryl hemisuccinate. The soluble material shows a homogeneous [3H]flunitrazepam ([3H]FNZ) binding population with an equilibrium dissociation constant (KD) of 4.4 +/- 0.2 nM compared to a KD of 2.3 +/- 0.2 nM in cerebellar synaptosomal membranes. The receptor complex in solution retains the characteristic facilitation of [3H]flunitrazepam binding induced by GABA, the pyrazolopyridine cartazolate, and the depressant barbiturate pentobarbital to the same extent as that observed in synaptosomal membranes. Furthermore, these responses are retained both quantitatively and qualitatively when this preparation is stored for 48 h at 4 degrees C. This is contrary to the results obtained with a CHAPS-soluble preparation including asolectin in which these responses are anomalous and extremely labile on storage.  相似文献   

3.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

4.
A M Ly  E K Michaelis 《Biochemistry》1991,30(17):4307-4316
L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. The affinity batch chromatography procedure described previously [Chen et al. (1988) J. Biol. Chem. 263, 417-427] was used to obtain a fraction enriched in glutamate-binding proteins. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [14C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [14C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. The increase in methylamine influx was dependent on the concentration of L-glutamic acid with an estimated Kact for L-glutamate equal to 0.2 microM for synaptic membrane proteins and 0.32 microM for purified proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. Glutamate-activated methylamine flux was completely inhibited by the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of Na+ led to a transient increase in the influx of the lipid-permeable anion probe S14CN-. Electrophoretic analysis of partially purified proteins reconstituted in liposomes indicated enrichment of several bands, the most prominent being those of molecular size equal to approximately 69, 60, 35, and 25 kDa. Antibodies raised against the purified 71- and 63-kDa glutamate-binding proteins reacted strongly with the approximately 69-kDa band of reconstituted proteins and markedly decreased the initial rate of glutamate-activated cation flux. These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the approximately 69-kDa protein in the function of these ion channels.  相似文献   

5.
The V1 vasopressin receptor has been solubilized from rat liver membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammoniol]-1-propanesulfonate (CHAPS) and reconstituted into phospholipid vesicles. There is essentially complete solubilization of the receptor by 3% CHAPS at a protein concentration of 15 mg/ml. Reconstitution into soybean phospholipid vesicles is readily achieved either by gel filtration chromatography or by membrane dialysis. The binding of [3H]vasopressin to proteoliposomes is specific, saturable, reversible, and magnesium-dependent. In contrast, the detergent-soluble vasopressin receptor does not display specific binding. The apparent affinity of the reconstituted receptor for [3H]vasopressin is approximately 4-fold lower than that of the receptor in native membranes. In addition, the binding of [3H]vasopressin to reconstituted vesicles is not sensitive to 100 microM guanosine 5'-O-thiotriphosphate (GTP gamma S) as it is in native membranes. However, the apparent affinity of the reconstituted receptor for ligand approximates that of native membranes when membranes are prebound with vasopressin prior to solubilization and reconstitution into vesicles. Furthermore, vesicles reconstituted from membranes prebound with vasopressin show GTP gamma S sensitivity of [3H] vasopressin binding. This finding strongly suggests that vasopressin stabilizes a receptor-G-protein complex during solubilization. The rat liver vasopressin receptor is a glycoprotein, as shown by its specific binding to the lectin "wheat germ agglutinin." The vasopressin receptor can be reconstituted from the N-acetylglucosamine-eluted peak of a wheat germ agglutinin-Sepharose column, and [3H] vasopressin binding activity is purified 5-6-fold from membranes by this chromatographic procedure. The functionality of the partially purified receptor is indicated by its ability to bind ligand with high affinity and by its ability to functionally interact with a G-protein when vasopressin is bound prior to solubilization.  相似文献   

6.
Functional reconstitution of the glycine receptor   总被引:1,自引:0,他引:1  
The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor (proteins of Mr 48,000 and 58,000). The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of [3H]strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), we have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ [6-methoxy-N-(3-sulfopropyl)quinolinium]. Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. Our results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.  相似文献   

7.
The binding of [3H]flunitrazepam to benzodiazepine receptors in synaptic membranes and a digitonin-solubilized receptor fraction of rat brain is increased by avermectin B1a and gamma-aminobutyric acid (GABA). The effects of avermectin B1a and GABA are both sensitive to inhibition by (+)-bicuculline. Avermectin B1a and GABA both decrease the Kd and increase the Bmax of [3H]flunitrazepam binding to membranes. Kinetic analysis of the binding of [3H]flunitrazepam to rat brain membranes indicates that avermectin B1a and GABA reduce the rate constants of both association and dissociation between the ligand and the receptor. These results suggest a similar mechanism of modulation of benzodiazepine binding by avermectin B1a and GABA. This modulation may involve in interaction among the receptors for benzodiazepine, GABA and avermectin B1a.  相似文献   

8.
Affinity column-purified GABA-benzodiazepine receptor proteins from human, cow, and rat brain were photoaffinity labeled with both [3H]flunitrazepam and [3H]muscimol and examined by gel electrophoresis in sodium dodecyl sulfate. Using high receptor protein concentrations (1 microM), the benzodiazepine ligand [3H]flunitrazepam was incorporated covalently primarily into the expected 52 kiloDalton major subunit but also significantly into a second 57 kiloDalton peptide. Likewise the GABA ligand [3H]muscimol photolabeled primarily the 57 kiloDalton peptide but also to some extent the 52 kiloDalton peptide. This cross-labeling suggests strongly that both major subunits carry binding sites for both GABA and benzodiazepine.  相似文献   

9.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

10.
The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.  相似文献   

11.
Tritiated meta-sulfonate benzene diazonium ([3H]MSBD), a molecule structurally related to 4-aminobutyrate (GABA), which presents a reactivity toward nucleophilic amino acid residues, was synthesized to investigate the GABA binding site on the GABAA receptor. Irreversible labeling reactions using [3H]MSBD were performed on purified GABAA receptors isolated from cow brain membranes and labeled receptors were analyzed by SDS/PAGE. [3H]MSBD was found to be specifically incorporated into proteins in the 45-60 kDa molecular mass range which were identified as alpha1 subunits and beta2/beta3 subunits by immunoprecipitation with subunit-specific antibodies. The specific immunoprecipitation of alpha and beta subunits confirms that binding of [3H]MSBD occurs at the boundary of these subunits. These labeling results confirm the involvement of nucleophilic residues from the beta subunit but reveal also the contribution of yet unidentified nucleophilic residues on the alpha subunit for the GABA binding site.  相似文献   

12.
A F Ikin  Y Kloog  M Sokolovsky 《Biochemistry》1990,29(9):2290-2295
The N-methyl-D-aspartate (NMDA)/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of Mr 67,000, 57,000, 46,000, and 33,000. [3H]Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (Kd) of [1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (Bmax) for [3H]TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of [3H]TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.  相似文献   

13.
The gamma-aminobutyric acidA (GABAA) receptor of codfish brain has been purified to homogeneity and contains a single polypeptide band of 56 kDa molecular mass. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) of codfish GABA receptor photoaffinity-labeled by both [3H]flunitrazepam ([3H]Flu) and [3H]muscimol showed a single radioactive peak with molecular mass of 56 kDa, in contrast to the multiple subunits found in other vertebrate species. The codfish receptor, purified using benzodiazepine (BZ, Ro 7-1986/1) affinity chromatography, contains an apparent single band both by isoelectric focussing and on a silver-stained SDS gel. The receptor density and affinity constants for [3H]muscimol and [3H]Flu binding are comparable to those in mammalian brain, and the specific activity (greater than 1,000 pmol/mg of protein) is comparable to that of preparations purified from those sources. The pharmacological specificity of the codfish GABA-BZ receptor is generally similar to that of mammalian brain, including GABA-BZ coupling. The BZ binding exhibits homogeneous kinetic properties resembling those of the mammalian BZ2 receptor type, and shows strong GABA enhancement of [3H]Flu binding and weaker pentobarbital potentiation. This is consistent with other observations of an earlier phylogenetic, as well as ontogenetic, emergence in mammals of the BZ2 receptor subtype than the BZ1. Codfish GABA receptor is postulated to be a homo-oligomer in which the conformation of GABA and BZ recognition sites is very similar to that in the mammalian hetero-oligomeric GABAA receptor. The codfish receptor appears to be encoded by an ancestral gene and indicates an early development of BZ-GABA coupling.  相似文献   

14.
Premazepam (PRZ) in vitro competitively displaced 3H-diazepam (DIA), 3H-flunitrazepam (FLU) and 3H-RO 15-1788 from their binding sites on rat brain synaptosomes, with a potency intermediate to other benzodiazepines (BDZs), and Hill coefficients near 1 in different brain regions. Incubation at 37 degrees C reduced premazepam's affinity for BDZ receptors to a lower extent than other benzodiazepines and had no effect on the Hill coefficient. The IC50 of PRZ on 3H-RO 15-1788 and 3H-FLU binding was markedly reduced by GABA in rat cortex, like those of reference classical BDZs, but was GABA-independent in the cerebellum. The IC50 of the BDZ antagonist, RO 15-1788 was unaffected by GABA in both brain areas. The possibility that PRZ behaves as a partial agonist in the cortex and as an antagonist in the cerebellum is discussed.  相似文献   

15.
beta-adrenergic receptors were solubilized from rat erythrocyte plasma membranes using digitonin. Solubilized receptors were then reconstituted into phospholipid vesicles by the addition of dimyristoylphosphatidylcholine and removal of detergent. Vesicles were separated from residual soluble receptors and detergent by rate-zonal ultracentrifugation. Vesicles were monolamellar, 500-900 A in diameter, and had a lipid content of 6 mumol phospholipid/mg protein. Specific binding of the beta-adrenergic ligand [3H]dihydroalprenolol ([3H]DNA) was 0.9-1.9 pmol/mg protein. Reconstitution of receptors into vesicles restored their ability to bind [125I]iodohydroxybenzylpindolol ([125I]IHYP). This ligand does not bind to detergent-solubilized receptors. [125I]IHYP binding was saturable [Kd = 84 pM] and competed appropriately with (+) and (-) isomers of beta-adrenergic agonists and antagonists. These receptor vesicles therefore appear to be an excellent model system for the study of beta-adrenergic receptor function in a defined lipid milieu.  相似文献   

16.
Enzymatic Reconstitution of Brain Membrane and Membrane Opiate Receptors   总被引:1,自引:1,他引:0  
A new method using lysophosphatide and acyl-CoA as detergents has been used to solubilize the rat brain opiate receptor. After solubilization, lysophosphatide and acyl-CoA can be almost completely removed by an enzymatic reaction that uses an acyltransferase from rat liver microsomes and reconstitutes the solubilized receptor in membranous vesicles. Morphological studies performed with negative staining and freeze-fracture electron microscopy revealed that the general appearance and intramembrane particle distribution of fracture faces in the reconstituted membrane are similar to those of the native membrane; this indicates that hydrophobic protein components of the original membrane were incorporated during reconstitution. Reconstituted membrane, however, contained higher levels of phosphatidylcholine and lower levels of cholesterol. The activities of the membrane-bound enzymes Na+, K+-ATPase and Ca2+, Mg2+-ATPase in the reconstituted system were 24 and 3%, respectively, those of the native membrane. Although binding of opiate ligands to the reconstituted membrane was stereospecific and saturable, higher concentrations of some of the unlabeled ligands were required to inhibit binding of the radiolabeled ligands. These changes in receptor characteristics are likely due to changes in lipid composition, physical state, and/or distribution of the lipids in the reconstituted membrane bilayer. This conclusion is supported by an increase in the affinity of opiate ligands for reconstituted membrane after adjustment of the latter's lipid composition to match more closely that of the original membrane. This was accomplished by treatment with phospholipid exchange protein to remove the excess phosphatidylcholine and by incorporation of cholesterol into the reconstituted membrane.  相似文献   

17.
Phospholipid and Ca++ dependency of phorbol ester receptors   总被引:2,自引:0,他引:2  
The phospholipid and Ca++ dependency of a partially purified phorbol ester apo-receptor from the soluble fraction of mouse brain homogenates was studied. This apo-receptor is believed to be identical with the Ca++ and phospholipid-dependent protein kinase C. Binding of phorbol esters to the receptor/kinase C was shown to be entirely dependent on phospholipids. The negatively charged phospholipids phosphatidylserine, phosphatidylinositol, and phosphatidic acid all fully reconstituted binding. The neutral phospholipids were inactive. Among active phospholipids and mixtures of phospholipids, substantial differences (greater than 100-fold) were observed in the amounts required to achieve reconstitution. Although Ca++ was not required for reconstitution of binding activity, it dramatically (up to 100-fold) increased the potency of phospholipids for reconstitution. The phospholipids not only permitted reconstitution of the apo-receptor but also played a major role in determining the binding characteristics of the complex. The KD values of [3H]phorbol 12,13-dibutyrate were in the range of 0.8 nM for the complex with phosphatidylserine to 30 nM for the complex with dioleoyl-phosphatidic acid. Like the binding affinity, the stimulation of protein kinase C activity by phorbol esters was dependent on the phospholipid into which the receptor/kinase C was reconstituted. The importance of the lipid domain for controlling the receptor/kinase C activity and for modulation of cellular sensitivity to phorbol esters is discussed.  相似文献   

18.
The 145-kDa molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3d. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.  相似文献   

19.
No significant differences are evident in the specific binding characteristics of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to EDTA/water-dialyzed P2 membranes of human, cow, rat, chicken and fish brain. This species similarity includes dissociation constants of 61-77 nM at 37 degrees C, maximum receptor densities of 3-7 pmol/mg protein, and sensitivity to inhibition or displacement by gamma-aminobutyric acid (GABA), two cage convulsants (picrotoxinin and t-butylbicycloorthobenzoate) and the insecticide [1R,cis, alpha S]-cypermethrin, indicating a constancy during vertebrate evolution of the [35S]TBPS binding site and its coupling with other components of the GABA receptor-ionophore complex. As a possible exception, chicken and fish brain membranes appear to be less sensitive than the others to the insecticide alpha-endosulfan. Human and rat preparations are also essentially identical relative to the inhibition of radioligand binding by two GABA mimetics (muscimol and 3-amino-propanesulfonic acid), six other cage convulsants (including examples of three classes of polychlorocycloalkane insecticides), a potent anthelmintic agent (Ivermectin), dimethylbutylbarbiturate, the convulsant benzodiazepine Ro 5-3663, and ethanol. The findings to date with [35S]TBPS and the GABA receptor-ionophore complex in rat brain membranes are therefore generally applicable to human preparations. Cow brain is an appropriate source for large scale preparations in receptor purification studies since it is essentially identical to human and rat preparations in all parameters examined. Species differences in sensitivity to the toxic effects of the convulsants and polychlorocycloalkane insecticides considered are apparently not attributable to receptor site specificity.  相似文献   

20.
The receptor of alpha-latrotoxin (the major toxin of the black widow spider venom), purified from bovine synaptosomal membranes, was reconstituted into small unilamellar liposomes. These (but not control) liposomes exhibited high-affinity, specific binding of [125I]alpha-latrotoxin. In the receptor-bearing liposomes alpha-latrotoxin induced depolarization and stimulated 45Ca efflux. These responses to alpha-latrotoxin, that were observed only in the presence of external divalent cations, resembled those previously demonstrated in mammalian brain synaptosomes. The alpha-latrotoxin-activated ion fluxes are therefore, at least in part, the result of the direct interaction of the toxin with its receptor. When control and receptor-bearing liposomes were pre-incubated with alpha-latrotoxin and then added to a solution bathing a planar lipid bilayer membrane, single channel cationic conductances were observed. In the presence of the receptor, the conductances induced by alpha-latrotoxin were markedly different from those observed without the receptor, but not identical to those observed without the receptor, but not identical to those recently characterized by patch clamping in the cells of a line (PC12) sensitive to alpha-latrotoxin. These results demonstrate that the reconstituted receptor is functional, and suggest that the cationic channel activated by the toxin-receptor interaction is modulated by additional component(s) in the membrane of synapses and cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号