首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
The effects of sphingosine 1-phosphate (S1P) on prostaglandin I(2) (PGI(2)) production and cyclooxygenase (COX) expression in cultured rat vascular smooth muscle cells (VSMCs) were investigated. S1P stimulated PGI(2) production in a concentration-dependent manner, which was completely suppressed by NS-398, a selective COX-2 inhibitor, as determined by radioimmunoassay. S1P stimulated COX-2 protein and mRNA expressions in a concentration- and time-dependent manner, while it had no effect on COX-1 expression. S1P(2) and S1P(3) receptors mRNA were abundantly expressed in rat VSMCs. Suramin, an antagonist of S1P(3) receptor, almost completely inhibited S1P-induced COX-2 expression. Pretreatment of VSMCs with pertussis toxin (PTX) partially, but significantly inhibited S1P-induced PGI(2) production and COX-2 expression. S1P also activated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). However, neither PD 98059, a selective inhibitor of ERK activation, nor SB 203580, a selective inhibitor of p38 MAPK, had a significant inhibitory effect on S1P-induced COX-2 expression, suggesting that the MAPK activation does not play main roles in S1P-induced COX-2 induction. S1P-induced COX-2 expression was inhibited by PP2, an inhibitor of Src-family tyrosine kinase, Ca(2+) depletion, and GF 109203X, an inhibitor of protein kinase C (PKC). These results suggest that S1P stimulates COX-2 induction in rat VSMCs through mechanisms involving Ca(2+)-dependent PKC and Src-family tyrosine kinase activation via S1P(3) receptor coupled to PTX-sensitive and -insensitive G proteins.  相似文献   

3.
Both cyclooxygenase (COX)-1 and COX-2, encoded by Ptgs1 and Ptgs2, function coordinately during inflammation. But the relative contributions and compensations of COX-1 and COX-2 to inflammatory responses remain unanswered. We used three engineered mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another to discriminate the distinct roles and interchangeability of COX isoforms during systemic inflammation. In macrophages, kidneys, and lungs, “flipped” Ptgs genes generate a “reversed” COX expression pattern, where the knock-in COX-2 is expressed constitutively and the knock-in COX-1 is lipopolysaccharide inducible. A panel of eicosanoids detected in serum and kidney demonstrates that prostaglandin (PG) biosynthesis requires native COX-1 and cannot be rescued by the knock-in COX-2. Our data further reveal preferential compensation of COX isoforms for prostanoid production in macrophages and throughout the body, as reflected by urinary PG metabolites. NanoString analysis indicates that inflammatory networks can be maintained by isoform substitution in inflamed macrophages. However, COX-1>COX-2 macrophages show reduced activation of inflammatory signaling pathways, indicating that COX-1 may be replaced by COX-2 within this complex milieu, but not vice versa. Collectively, each COX isoform plays a distinct role subject to subcellular environment and tissue/cell-specific conditions, leading to subtle compensatory differences during systemic inflammation.  相似文献   

4.
We investigated the effect of lipopolysaccharide (LPS) on the induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in muscularis resident macrophages of rat intestine in situ. When the tissue was incubated with LPS for 4 h, mRNA levels of iNOS and COX-2 were increased. The majority of iNOS and COX-2 proteins appeared to be localized to the dense network of muscularis resident macrophages immunoreactive to ED2. LPS treatment also increased the production of nitric oxide (NO), PGE(2), and PGI(2). The increased expression of iNOS mRNA by LPS was suppressed by indomethacin but not by N(G)-monomethyl-L-arginine (L-NMMA). The increased expression of COX-2 mRNA by LPS was affected neither by indomethacin nor by L-NMMA. Muscle contractility stimulated by 3 microM carbachol was significantly inhibited in the LPS-treated muscle, which was restored by treatment of the tissue with L-NMMA, aminoguanidine, indomethacin, or NS-398. Together, these findings show that LPS increases iNOS expression and stimulates NO production in muscularis resident macrophages to inhibit smooth muscle contraction. LPS-induced iNOS gene expression may be mediated by autocrine regulation of PGs through the induction of COX-2 gene expression.  相似文献   

5.
Prostaglandin E(2) (PGE(2)), produced by macrophages, has important immune regulatory functions, suppressing a type 1 immune response and stimulating a type 2 immune response. Type 1 cytokines (interleukin-2 [IL-2], IL-12, and gamma interferon) increase in freshly isolated peripheral blood mononuclear cells (PBMCs) of animals with an early disease stage of bovine leukemia virus (BLV) infection, while IL-10 increases in animals with a late disease stage. Although IL-10 has an immunosuppressive role in the host immune system, IL-10 also inhibits BLV tax and pol mRNA levels in vitro. In contrast, IL-2 stimulates BLV tax and pol mRNA and p24 protein expression in cultured PBMCs. The inhibitory effect of IL-10 on BLV expression depends on soluble factors secreted by macrophages. Thus, we hypothesized that PGE(2), a cyclooxygenase 2 (COX-2) product of macrophages, may regulate BLV expression. Here, we show that the level of COX-2 mRNA was decreased in PBMCs treated with IL-10, while IL-2 enhanced the level of COX-2 mRNA. Addition of PGE(2) stimulated BLV tax and pol mRNA levels and reversed the IL-10 inhibition of BLV mRNA. In addition, the specific COX-2 inhibitor, NS-398, inhibited the amount of BLV mRNA detected. Addition of PGE(2) increased BLV tax mRNA regardless of NS-398 addition. PGE(2) inhibited antigen-specific PBMC stimulation, suggesting that stimulation of BLV tax and pol mRNA levels by PGE(2) is independent of cell proliferation. These findings suggest that macrophage-derived COX-2 products, such as PGE(2), regulate virus expression and disease progression in BLV infection.  相似文献   

6.
7.
We report here that lipopolysaccharide (LPS) priming of rabbit alveolar macrophages leads to amplified synthesis of prostanoids, at least in part, by induction of a novel prostaglandin H synthase (PGH synthase). Rabbit alveolar macrophages were cultured with or without added LPS derived from Escherichia coli 0111:B4 for 4 h and then stimulated with opsonized zymosan (OPZ). LPS priming of alveolar macrophages resulted in enhanced release of thromboxane (TX) upon stimulation with OPZ, when compared to stimulated non-LPS controls. Addition of exogenous arachidonic acid to LPS-primed alveolar macrophages also resulted in increased production of TX. The LPS-induced increase in TX formation, in response to OPZ or arachidonic acid, was abolished by the addition of actinomycin D or cycloheximide during the priming period. Gas chromatography/mass spectrometry analysis indicated that levels of prostaglandins D2, E2, and F2 alpha, along with TX, were augmented in stimulated LPS-primed alveolar macrophages, implicating PGH synthase in the priming process. PGH synthase enzymatic activity, as determined by addition of arachidonic acid to macrophage sonicates, was markedly enhanced in LPS-primed alveolar macrophages. This correlated with increased PGH synthase levels detected by immunoprecipitation of 35S-labeled proteins and by Western blot analysis. Finally, Northern blot analysis using a cDNA probe to the recently described mitogen-inducible mouse PGH synthase revealed strong induction of approximately 4.3-kilobase mRNA in LPS-primed alveolar macrophages. Taken together, these results reveal that induction of a novel PGH synthase, probably the rabbit homologue of PGH synthase-2, plays a role in the enhanced synthesis of prostanoids by LPS-primed alveolar macrophages.  相似文献   

8.
9.
10.
Feedback control of cyclooxygenase-2 expression through PPARgamma   总被引:5,自引:0,他引:5  
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostaglandins (PG), plays a key role in inflammation, tumorigenesis, development, and circulatory homeostasis. The PGD(2) metabolite 15-deoxy-Delta(12, 14) PGJ(2) (15d-PGJ(2)) was identified as a potent natural ligand for the peroxisome proliferator-activated receptor-gamma (PPARgamma). PPARgamma expressed in macrophages has been postulated as a negative regulator of inflammation and a positive regulator of differentiation into foam cell associated with atherogenesis. Here, we show that 15d-PGJ(2) suppresses the lipopolysaccharide (LPS)-induced expression of COX-2 in the macrophage-like differentiated U937 cells but not in vascular endothelial cells. PPARgamma mRNA abundantly expressed in the U937 cells, not in the endothelial cells, is down-regulated by LPS. In contrast, LPS up-regulates mRNA for the glucocorticoid receptor which ligand anti-inflammatory steroid dexamethasone (DEX) strongly suppresses the LPS-induced expression of COX-2, although both 15d-PGJ(2) and DEX suppressed COX-2 promoter activity by interfering with the NF-kappaB signaling pathway. Transfection of a PPARgamma expression vector into the endothelial cells acquires this suppressive regulation of COX-2 gene by 15d-PGJ(2) but not by DEX. A selective COX-2 inhibitor, NS-398, inhibits production of PGD(2) in the U937 cells. Taking these findings together, we propose that expression of COX-2 is regulated by a negative feedback loop mediated through PPARgamma, which makes possible a dynamic production of PG, especially in macrophages, and may be attributed to various expression patterns and physiological functions of COX-2.  相似文献   

11.
Chronic inflammatory diseases are characterized by the persistent presence of macrophages and other mononuclear cells, tissue destruction, cell proliferation, and the deposition of extracellular matrix (ECM). The tissue degradation is mediated, in part, by enhanced proteinase expression by macrophages. It has been demonstrated recently that macrophage proteinase expression can be stimulated or inhibited by purified ECM components. However, in an intact ECM the biologically active domains of matrix components may be masked either by tertiary conformation or by complex association with other matrix molecules. In an effort to determine whether a complex ECM produced by vascular smooth muscle cells (SMC) regulates macrophage degradative phenotype, we prepared insoluble SMC matrices and examined their ability to regulate proteinase expression by RAW264.7 and thioglycollate-elicited peritoneal macrophages. Here we demonstrate that macrophage engagement of SMC-ECM triggers PKC-dependent activation of MAPK(erk1/2) leading to increased expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E(2) synthesis. The addition of PGE(2) to macrophage cultures stimulates their expression of both urokinase-type plasminogen activator and MMP-9, and the selective COX-2 inhibitor NS-398 blocks ECM-induced proteinase expression. Moreover, ECM-induced PGE(2) and MMP-9 expression by elicited COX-2(-/-) macrophages is markedly reduced when compared with the response of either COX-2(+/-) or COX-2(+/+) macrophages. These data clearly demonstrate that SMC-ECM exerts a regulatory role on the degradative phenotype of macrophages via enhanced urokinase-type plasminogen activator and MMP-9 expression, and identify COX-2 as a targetable component of the signaling pathway leading to increased proteinase expression.  相似文献   

12.
Using human blood monocytes (for determination of cyclooxygenase-2 (COX-2) mRNA by RT-PCR) and human whole blood (for prostanoid determination), the present study investigates the influence of the second messenger cAMP on lipopolysaccharide (LPS)-induced COX-2 expression with particular emphasis on the role of prostaglandin E(2) (PGE(2)) in this process. Elevation of intracellular cAMP with a cell-permeable cAMP analogue (dibutyryl cAMP), an adenylyl cyclase activator (cholera toxin), or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) substantially enhanced LPS-induced PGE(2) formation and COX-2 mRNA expression, but did not modify COX-2 enzyme activity. Moreover, up-regulation of LPS-induced COX-2 expression was caused by PGE(2), butaprost (selective agonist of the adenylyl cyclase-coupled EP(2) receptor) and 11-deoxy PGE(1) (EP(2)/EP(4) agonist), whereas sulprostone (EP(3)/EP(1) agonist) left COX-2 expression unaltered. Abrogation of LPS-induced PGE(2) synthesis with the selective COX-2 inhibitor NS-398 caused a decrease in COX-2 mRNA levels that was restored by exogenous PGE(2) and mimicked by S(+)-flurbiprofen and ketoprofen. Overall, these results indicate a modulatory role of cAMP in the regulation of COX-2 expression. PGE(2), a cAMP-elevating final product of the COX-2 pathway, may autoregulate COX-2 expression in human monocytes via a positive feedback mechanism.  相似文献   

13.
We investigated the action of macrolide antibiotics, which are considered to have anti-inflammatory activity, on lipopolysaccharide (LPS)-stimulated prostaglandin (PG) E2 synthesis and the expression of mRNAs for cytosolic phospholipase A2 (cPLA2), cyclooxygenase (COX)-1, and COX-2 in human leukocytes. The production of LPS-stimulated PGE2 was significantly increased in peripheral polymorphonuclear leukocytes (PMNLs) and in mononuclear leukocytes (MNLs). Amounts of mRNAs for COX-2 and cPLA2, but not for COX-1, were enhanced by LPS in PMNLs and MNLs. The LPS-enhanced PGE2 synthesis and the expression of cPLA2 and COX-2 mRNAs were inhibited by clarithromycin, azithromycin and dexamethasone in PMNLs and MNLs. The mRNA expression of COX-1 in PMNLs was decreased by clarithromycin and azithromycin. Macrolide antibiotics inhibited PGE2 synthesis in human leukocytes by suppressing cPLA2, COX-1, and COX-2 mRNA expression. These data indicate one mechanism of macrolide anti-inflammatory activity.  相似文献   

14.
15.
Cyclooxygenase-2 (COX-2) is a recently discovered isoform of cyclooxygenase that is inducible by various types of inflammatory stimuli. Although this enzyme is considered to play a major role in inflammation processes by catalyzing the production of prostaglandins, the precise location, distribution, and regulation of prostaglandin synthesis remains unclear in several tissues. Using in situ hybridization histochemistry, we investigated the induction of COX-1 and COX-2 mRNA expression after systemic administration of a pyrogen, lipopolysaccharide (LPS), in kidney and adrenal gland in the rat. The COX-2 mRNA signals dramatically increased 1 h after LPS treatment in the kidney outer medulla and adrenal cortex, where almost no or little expression was observed in nontreated animals, and returned to control levels within 24 h. COX-2 mRNA levels increased in the kidney inner medulla 6 h after treatment. There was also a significant increase in mRNA levels in the kidney cortex and adrenal medulla. On the other hand, COX-1 mRNA levels did not show any detectable changes except in the kidney inner medulla, where a significant downregulation of mRNA expression was observed after LPS treatment. Light and electron immunocytochemistry using COX-2 antibodies showed that strong COX-2 immunoreactivity was localized to certain cortical cells of the thick ascending limb of Henle. In addition, based on double-staining with antiserum to nitric oxide synthase (NOS) four further cell populations could be identified in kidney cortex, including weakly COX-2-positive, NOS-positive macula densa cells. After LPS treatment, changes in COX-2 immunoreactivity could be observed in interstitial cells in the kidney medulla and in inner cortical cells in the adrenal gland. These results show that COX-2 is a highly induced enzyme that can be up-regulated in specific cell populations in kidney and adrenal gland in response to inflammation, leading to the elevated levels of prostaglandins seen during fever. In contrast COX-1 mRNA levels remained unchanged in this experimental situation, except for a decrease in kidney inner medulla.  相似文献   

16.
17.
18.
Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.  相似文献   

19.
20.
Prostaglandin E(2) (PGE(2)) has been implicated in the regulation of inflammatory and immunological events. Using RAW 264.7 macrophages, the present study investigates the influence of PGE(2) on the expression of cyclooxygenase-2 (COX-2). Incubation of cells with PGE(2) increased lipopolysaccharide (LPS)-induced COX-2 mRNA levels in a concentration-dependent manner. Upregulation of COX-2 expression by PGE(2) was completely abolished by the specific adenylyl cyclase inhibitor 2',5'-dideoxyadenosine and mimicked by butaprost, a selective agonist of the adenylyl cyclase-coupled PGE(2) receptor subtype 2 (EP(2)), or 11-deoxy PGE(1), an EP(2)/EP(4) receptor agonist. By contrast, the EP(3)/EP(1) receptor agonists 17-phenyl-omega-trinor PGE(2) and sulprostone left LPS-induced COX-2 expression virtually unaltered. Upregulation of LPS-induced COX-2 expression and subsequent PGE(2) synthesis was also observed in the presence of the cell-permeable cAMP analogue dibutyryl cAMP and the adenylyl cyclase activator cholera toxin. Together, our data demonstrate that PGE(2) potentiates COX-2 mRNA expression via an adenylyl cyclase/cAMP-dependent pathway. In conclusion, upregulation of COX-2 expression via an autocrine feed-forward loop may in part contribute to the well-known capacity of PGE(2)/cAMP to modulate inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号