共查询到20条相似文献,搜索用时 15 毫秒
1.
Two nucleases active on alkylated-depurinated DNA have been extracted from rat liver chromatin with 1 M KCl. The major enzyme was purified to near homogeneity; it has a molecular weight of 12 500 (although some dimerization might occur), needs Mg2+ or Mn2+ for activity. The endonuclease activity is specific for apurinic/apyrimidinic sites in DNA; the enzyme has no associated exonuclease activity. 相似文献
2.
Human endonuclease specific for apurinic/apyrimidinic sites in DNA. Partial purification and characterization of multiple forms from placenta. 总被引:2,自引:0,他引:2
Six chromatographically distinct forms of endonuclease active on apurinic and apyrimidinic sites in DNA have been purified away from DNA phosphatases, DNA N-glycosidases, and other DNases of human placenta. The forms seem to be monomeric proteins of 27,000 to 31,000 daltons, and although catalytically similar, they can be distinguished from one another on the basis of substrate Km and the effects of small molecules such as ATP. Analysis of enzymatic activity on a spectrum of damaged DNA substrates indicates that the enzyme forms probably act at an appreciable rate only adjacent to the phosphodiester bond of a deoxyribose lacking a base (purine or pyrimidine) in duplex DNA; such sites can be formed by treating the DNA with acid, alkylating agents, DNA N-glycosidases, and, probably, x-rays and OsO4. The incision is made so as to form a deoxyribose 5'-phosphate and a 3'-hydroxynucleotide. 相似文献
3.
A mollicute (mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase. 总被引:2,自引:0,他引:2
下载免费PDF全文

The DNA repair enzyme uracil-DNA glycosylase from Mycoplasma lactucae (831-C4) was purified 1,657-fold by using affinity chromatography and chromatofocusing techniques. The only substrate for the enzyme was DNA that contained uracil residues, and the Km of the enzyme was 1.05 +/- 0.12 microM for dUMP containing DNA. The product of the reaction was uracil, and it acted as a noncompetitive inhibitor of the uracil-DNA glycosylase with a Ki of 5.2 mM. The activity of the enzyme was insensitive to Mg2+, Mn2+, Zn2+, Ca2+, and Co2+ over the concentration range tested, and the activity was not inhibited by EDTA. The enzyme activity exhibited a biphasic response to monovalent cations and to polyamines. The enzyme had a pI of 6.4 and existed as a nonspherical monomeric protein with a molecular weight of 28,500 +/- 1,200. The uracil-DNA glycosylase from M. lactucae was inhibited by the uracil-DNA glycosylase inhibitor from bacteriophage PBS-2, but the amount of inhibitor required for 50% inhibition of the mycoplasmal enzyme was 2.2 and 8 times greater than that required to cause 50% inhibition of the uracil-DNA glycosylases from Escherichia coli and Bacillus subtilis, respectively. Previous studies have reported that some mollicutes lack uracil-DNA glycosylase activity, and the results of this study demonstrate that the uracil-DNA glycosylase from M. lactucae has a higher Km for uracil-containing DNA than those of the glycosylases of other procaryotic organisms. Thus, the low G + C content of the DNA from some mollicutes and the A.T-biased mutation pressure observed in these organisms may be related to their decreased capacity to remove uracil residues from DNA. 相似文献
4.
Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells 总被引:27,自引:0,他引:27
An endodeoxyribonuclease from HeLa cells acting on apurinic/apyrimidinic (AP) sites has been purified to apparent homogeneity as judged by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The presence of Triton X-100 was necessary throughout the purification for stabilization and stimulation of activity. The endonuclease has an apparent native molecular weight of 32,000 determined by molecular sieving and an apparent subunit molecular weight of 41,000 as judged by its electrophoretic mobility in SDS-polyacrylamide gels. The activity has an absolute requirement for Mg2+ or Mn2+ and a broad pH optimum between 6.7 and 9.0 with maximal activity near pH 7.5. The enzyme has no detectable exonuclease activity, nor any endonuclease activity on untreated duplex or single-stranded DNA. It is inhibited by adenine, hypoxanthine, adenosine, AMP, ADP-ribose, and NAD+, but it is unaffected by caffeine, the pyrimidine bases, ADP, ATP, or NADH. The use of a variety of damaged DNA substrates provided no indication that the enzyme acts on other than AP sites. The enzyme appears to cleave AP DNA so as to leave deoxyribose-5-phosphate at the 5' terminus and a 3'-OH at the 3' terminus; it also removes deoxyribose-5-phosphate from AP DNA which has deoxyribose at the 3' terminus. Specific antibody has been produced in rabbits which interacts only with a 41,000-dalton protein present in the purified enzyme (presumably the enzyme itself), as well as with partially purified AP endonuclease fractions from human placenta and fibroblasts. 相似文献
5.
S Seki S Ikeda S Watanabe M Hatsushika K Tsutsui K Akiyama B Zhang 《Biochimica et biophysica acta》1991,1079(1):57-64
A mouse repair enzyme having priming activity on bleomycin-damaged DNA for DNA polymerase was purified to apparent homogeneity and characterized. The enzyme extracted from permeabilized mouse ascites sarcoma (SR-C3H/He) cells with 0.2 M potassium phosphate buffer (pH 7.5) was purified by successive chromatographies on phosphocellulose, DEAE-cellulose, phosphocellulose (a second time), Sephadex G-100, single-stranded DNA cellulose and hydroxyapatite. The purified enzyme has an Mr of 34,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatical studies indicated that it is a multifunctional enzyme having exonuclease, apurinic/apyrimidinic endonuclease and phosphatase activities, similar to Escherichia coli exonuclease III. This enzyme is tentatively designated as APEX nuclease for apurinic/apyrimidinic endonuclease and exonuclease activities. The amino acid composition, amino-terminal amino acid sequence and an internal amino acid sequence of APEX nuclease are determined. 相似文献
6.
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the hydrolysis of the phosphodiester linkage between the DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' damaged termini. Recently we have shown that Tdp1 can liberate the 3' DNA phosphate termini from apurinic/apyrimidinic (AP) sites. Here, we found that Tdp1 is more active in the cleavage of the AP sites inside bubble-DNA structure in comparison to ssDNA containing AP site. Furthermore, Tdp1 hydrolyzes AP sites opposite to bulky fluorescein adduct faster than AP sites located in dsDNA. Whilst the Tdp1 H493R (SCAN1) and H263A mutants retain the ability to bind an AP site-containing DNA, both mutants do not reveal endonuclease activity, further suggesting the specificity of the AP cleavage activity. We suggest that this Tdp1 activity can contribute to the repair of AP sites particularly in DNA structures containing ssDNA region or AP sites in the context of clustered DNA lesions. 相似文献
7.
T P Brent 《Biochemistry》1979,18(5):911-916
A DNA glycosylase was purified about 30-fold from cultured human lymphoblasts (CCRF-CEM line) and was found to cleave 3-methyladenine from DNA alkylated with methyl methanesulfonate. The enzyme did not promote the release of 1-methyladenine, 7-methyladenine, or 7-methylguanine from DNA nor did it act on denatured methylated DNA. It produced apurinic sites in DNA alkylated with N-methyl-N-nitrosourea and ethyl methane-sulfonate as well as methyl methanesulfonate but not in untreated DNA or in DNA alkylated with nitrogen mustard or irradiated with ultraviolet light or X-rays. The glycosylase was free of detectable endonuclease activity in experiments with untreated DNA or DNA exposed to ultraviolet light; low levels of endonuclease activity, obtained when X-irradiated, alkylated, or depurinated DNA was the substrate, were attributed to contaminant apurinic endonuclease activity. This 3-methyladenine-DNA glycosylase has an estimated molecular weight of 34,000, is not dependent on divalent metal ions, and shows optimal activity at pH 7.5--8.5. 相似文献
8.
A Gentil J B Cabral-Neto R Mariage-Samson A Margot J L Imbach B Rayner A Sarasin 《Journal of molecular biology》1992,227(4):981-984
Abasic sites are common DNA lesions produced either spontaneously or as a consequence of the action of some genotoxic agent. The mutagenic properties of a unique abasic site replicated in mammalian cells have been studied using a shuttle vector. A plasmid, able to replicate both in mammalian cells and in bacteria, carrying a unique abasic site chemically synthesized has been constructed. After replication in mammalian cells, plasmid DNA was recovered and used to transform bacteria. Mutants were screened without selection pressure by differential hybridization with a labelled oligonucleotide and their DNA was sequenced. A mutation frequency ranging from 1% to 3% was found, depending on the base originally inserted during the vector construction, opposite the abasic site. All the sequenced mutants correspond to single base-pair substitutions targeted at the abasic site. We observed a deficit in guanine incorporation opposite the abasic site, while the three other bases were incorporated with a similar efficiency. The mutational potency of abasic sites was observed without any voluntary preconditioning treatment of mammalian cells in order to induce "SOS" like conditions. 相似文献
9.
The repair of abasic sites that arise in DNA from hydrolytic depurination/depyrimidination of the nitrogenous bases from the sugar-phosphate backbone and the action of DNA glycosylases on deaminated, oxidized, and alkylated bases are critical to cell survival. Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1; aka APE1/ref-1) is responsible for the initial removal of abasic lesions as part of the base excision repair pathway. Deletion of APE-1 activity is embryonic lethal in animals and is lethal in cells. Potential inhibitors of the repair function of APE-1 were identified based upon molecular modeling of the crystal structure of the APE-1 protein. We describe the characterization of several unique nanomolar inhibitors using two complementary biochemical screens. The most active molecules all contain a 2-methyl-4-amino-6,7-dioxolo-quinoline structure that is predicted from the modeling to anchor the compounds in the endonuclease site of the protein. The mechanism of action of the selected compounds was probed by fluorescence and competition studies, which indicate, in a specific case, direct interaction between the inhibitor and the active site of the protein. It is demonstrated that the inhibitors induce time-dependent increases in the accumulation of abasic sites in cells at levels that correlate with their potency to inhibit APE-1 endonuclease excision. The inhibitor molecules also potentiate by 5-fold the toxicity of a DNA methylating agent that creates abasic sites. The molecules represent a new class of APE-1 inhibitors that can be used to probe the biology of this critical enzyme and to sensitize resistant tumor cells to the cytotoxicity of clinically used DNA damaging anticancer drugs. 相似文献
10.
Timofeyeva NA Koval VV Ishchenko AA Saparbaev MK Fedorova OS 《Biochemistry. Biokhimii?a》2011,76(2):273-281
Human major apurinic/apyrimidinic endonuclease (APE1) is a multifunctional enzyme that plays a central role in DNA repair
through the base excision repair (BER) pathway. Besides BER, APE1 is involved in an alternative nucleotide incision repair
(NIR) pathway that bypasses glycosylases. We have analyzed the conformational dynamics and the kinetic mechanism of APE1 action
in the NIR pathway. For this purpose we recorded changes in the intensity of fluorescence of 2-aminopurine located in two
different positions in a substrate containing dihydrouridine (DHU) during the interaction of the substrate with the enzyme.
The enzyme was found to change its conformation within the complex with substrate and also within the complex with the reaction
product, and the release of the enzyme from the complex with the product seemed to be the limiting stage of the enzymatic
process. The rate constants of the catalytic cleavage of DHU-containing substrates by APE1 were comparable with the appropriate
rate constants for substrates containing apurinic/apyrimidinic site or tetrahydrofuran residue, which suggests that NIR is
a biologically important process. 相似文献
11.
Studies on the enzymology of apurinic/apyrimidinic (AP) endonucleases from procaryotic and eucaryotic organisms are reviewed. Emphasis will be placed on the enzymes from Escherichia coli from which a considerable portion of our knowledge has been derived. Recent studies on similar enzymes from eucaryotes will be discussed as well. In addition, we will discuss the chemical and physical properties of AP sites and review studies on peptides and acridine derivatives which incise DNA at AP sites. 相似文献
12.
Onyango DO Naguleswaran A Delaplane S Reed A Kelley MR Georgiadis MM Sullivan WJ 《DNA Repair》2011,10(5):466-475
DNA repair is essential for cell viability and proliferation. In addition to reactive oxygen produced as a byproduct of their own metabolism, intracellular parasites also have to manage oxidative stress generated as a defense mechanism by the host. The spontaneous loss of DNA bases due to hydrolysis and oxidative DNA damage in intracellular parasites is great, but little is known about the type of DNA repair machineries that exist in these early-branching eukaryotes. However, it is clear, processes similar to DNA base excision repair (BER) must exist to rectify spontaneous and host-mediated damage in Toxoplasma gondii. Here we report that T. gondii, an opportunistic protozoan pathogen, possesses two apurinic/apyrimidinic (AP) endonucleases that function in DNA BER. We characterize the enzymatic activities of Toxoplasma exonuclease III (ExoIII, or Ape1) and endonuclease IV (EndoIV, or Apn1), designated TgAPE and TgAPN, respectively. Over-expression of TgAPN in Toxoplasma conferred protection from DNA damage, and viable knockouts of TgAPN were not obtainable. We generated an inducible TgAPN knockdown mutant using a ligand-controlled destabilization domain to establish that TgAPN is critical for Toxoplasma to recover from DNA damage. The importance of TgAPN and the fact that humans lack any observable APN family activity highlights TgAPN as a promising candidate for drug development to treat toxoplasmosis. 相似文献
13.
Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. 总被引:2,自引:0,他引:2
下载免费PDF全文

[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites. 相似文献
14.
Partial purification and characterization of four endodeoxyribonuclease activities from Escherichia coli K-12 总被引:1,自引:0,他引:1
下载免费PDF全文

Four hitherto undescribed endodeoxyribonucleases, temporarily designated A1, A2, A3, and B, have been isolated from E. coli K-12. Each requires Mg++ and is not stimulated by ATP or S-adenosylmethionine. A3 is strongly inhibited by Fe+++ and weakly inhibited by ATP, S-adenosylmethionine, and DPN, whereas B is inhibited by caffeine. Each can be purified free of exonuclease or DNA-3′-phosphatase. A1 (molecular weight approximately 72,000) cleaves single-stranded, circular fd DNA to form 3′-hydroxyl termini and introduces nicks and breaks in the closed, double-stranded replicative form DNA of fd (fd RFI). A2 (molecular weight approximately 46,000) cleaves fd DNA and introduces nicks and breaks in RFI, forming 3′-hydroxyl- and 5′-phosphoryl termini. A3 (molecular weight approximately 38,000) cleaves fd DNA to form 3′-hydroxyl termini and introduces only nicks in fd RFI. Irradiation of the RFI with ultraviolet light markedly increases the rate of hydrolysis by A3. B appears to form 3′-phosphoryl termini with fd DNA, but its characterization is highly preliminary due to its instability. 相似文献
15.
16.
DNA repair in Saccharomyces cerevisiae: purification and characterization of apurinic endonucleases
下载免费PDF全文

Five chromatographically distinct apurinic endonucleases (D1, D2, D3, D4, and E) were purified from Saccharomyces cerevisiae 234, 122, 1,000, 4,550, and 5,490-fold, respectively. All appeared to be class II apurinic endonucleases and were not contaminated with exonuclease or nonspecific endonuclease activities under the reaction conditions used. All had similar pH optima, but endonucleases D4 and E showed higher salt requirements and endonuclease D4 had a lower Mg2+ requirement for optimal activity than the other endonucleases. Endonuclease D4 also nicked OsO4-treated DNA. The molecular weights of the apurinic endonucleases as determined by glycerol gradient sedimentation analysis were 37,000, 49,000, and 10,000, for endonucleases E, D4, and D2, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of samples of radioiodinated endonuclease E showed the presence of two proteins. 相似文献
17.
18.
DNA glycosylases play a major role in the repair of deaminated DNA damage. Previous investigations identified five families within the uracil-DNA glycosylase (UDG) superfamily. All enzymes within the superfamily studied thus far exhibit uracil-DNA glycosylase activity. Here we identify a new class of DNA glycosylases in the UDG superfamily that lacks UDG activity. Instead, these enzymes act as hypoxanthine-DNA glycosylases in vitro and in vivo. Molecular modeling and structure-guided mutational analysis allowed us to identify a unique catalytic center in this class of DNA glycosylases. Based on unprecedented biochemical properties and phylogenetic analysis, we propose this new class of DNA repair glycosylases that exists in bacteria, archaea, and eukaryotes as family 6 and designate it as the hypoxanthine-DNA glycosylase family. This study demonstrates the structural evolvability that underlies substrate specificity and catalytic flexibility in the evolution of enzymatic function. 相似文献
19.
20.
Mechanism of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli [formamidopyrimidine]DNA glycosylase. 总被引:8,自引:0,他引:8
下载免费PDF全文

Escherichia coli [formamidopyrimidine]DNA glycosylase catalyses the nicking of both the phosphodiester bonds 3' and 5' of apurinic or apyrimidinic sites in DNA so that the base-free deoxyribose is replaced by a gap limited by 3'-phosphate and 5'-phosphate ends. The two nickings are not the results of hydrolytic processes; the [formamidopyrimidine]DNA glycosylase rather catalyses a beta-elimination reaction that is immediately followed by a delta-elimination. The enzyme is without action on a 3'-terminal base-free deoxyribose or on a 3'-terminal base-free unsaturated sugar produced by a beta-elimination reaction nicking the DNA strand 3' to an apurinic or apyrimidinic site. 相似文献