首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.  相似文献   

2.
A series of partial agonists of the Glucocorticoid Receptor were prepared targeting reduced transactivation activity, while maintaining significant transrepression activity. Incorporation of an ortho-aryl amide produced compounds with the desired in vitro profile. Bioreactors consisting of Suspension cultures of Sf21 cells co expressing a CYP3A4 and NADPH-cytochrome P450 oxireductase were used to prepare the major metabolites of these compounds and revealed that oxidative N-dealkylation provided a pathway for formation of metabolites that were more agonistic than the parent partial agonists. Oxidative N-dealkylation was blocked in a new series of compounds, however oxidation alone was capable of producing full agonist metabolites. Incorporation of an ortho-primary amide and utilization of fluorine to modulate agonism afforded partial agonist MK-5932. Synthesis of the major metabolites of MK-5932 using bioreactor technology revealed that no significant GR-active metabolites were formed. Orally administered MK-5932 displayed anti-inflammatory efficacy in a Rat Oxazolone-induced chronic dermatitis model, while sparing plasma insulin.  相似文献   

3.
Carboranes are a class of carbon-containing polyhedral boron-cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors. Estrogen deficiency results in marked bone loss due to increased osteoclastic bone resorption in females, but estrogen replacement therapy is not generally used for postmenopausal osteoporosis due to the risk of uterine cancer. We synthesized a novel carborane compound BE360 to clarify its anti-osteoporosis activity. BE360 showed a high binding affinity to estrogen receptors (ER), ERα and ERβ. In ovariectomized (OVX) mice, femoral bone volume was markedly reduced and BE360 dose-dependently restored bone loss in OVX mice. However, BE360 did not exhibit any estrogenic activity in the uterus. BE360 also restored bone loss in orchidectomized mice without androgenic action in the sex organs. Therefore, BE360 is a novel selective estrogen receptor modulator (SERM) that may offer a new therapy option for osteoporosis.  相似文献   

4.
5.
6.
雄激素和雌激素受体药物筛选方法的研究进展   总被引:2,自引:0,他引:2  
牟凌云  王明伟 《生命科学》2004,16(5):305-311
雄激素和雌激素受体通过与相应激素特异性结合促进细胞分化和组织生长,发挥重要的生理功能,其功能失调可诱发多种疾病。雄激素和雌激素受体的选择性调节剂是治疗相关疾病的重要药物。基于基因组学、分子生物学、细胞生物学和生物信息学等最新研究成果而发展形成的实验技术或方法被用于新型雄激素和雌激素受体调节剂的筛选,显著加快了新药开发的进程。  相似文献   

7.
Defects of the androgen receptor cause a wide spectrum of abnormalities of phenotypic male development, ranging from individuals with mild defects of virilization to those with complete female phenotypes. In parallel with this phenotypic spectrum, a large number of different mutations have been identified that alter the synthesis or functional activity of the receptor protein. In many instances, the genetic mutations identified lead to an absence of the intact, full-length receptor protein. Such defects (splicing defects, termination codons, partial or complete gene deletions) invariably result in the phenotype of complete androgen insensitivity (complete testicular feminization). By contrast, single amino acid substitutions in the androgen receptor protein can result in the entire phenotypic spectrum of androgen resistant phenotypes and provide far more information on the functional organization of the receptor protein. Amino acid substitutions in different segments of the AR open-reading frame disturb AR function by distinct mechanisms. Substitutions in the DNA binding domain of the receptor appear to comprise a relatively homogeneous group. These substitutions impair the capacity of the receptor to bind to specific DNA sequence elements and to modulate the function of responsive genes. Amino acid substitutions in the hormone-binding domain of the receptor have a more varied effect on receptor function. In some instances, the resulting defect is obvious and causes an inability of the receptor to bind hormone. In other instances, the effect is subtler, and may result in the production of a receptor protein that displays qualitative abnormalities of hormone binding or from which hormone dissociates more rapidly. Often it is not possible to correlate the type of binding defect with the phenotype that is observed. Instead, it is necessary to measure the capacity of the receptor that is synthesized in functional assays in order to discern any type of correlation with phenotype. Finally, two types of androgen receptor mutation do not fit such a categorization. The first of these—the glutamine repeat expansion that is observed in spinal and bulbar muscular atrophy—leads to a reduction of receptor function that can be measured in heterologous cells or in fibroblasts established from such patients. The expression of ARs containing such expanded repeats in men is associated with a degeneration of motor neurons in the spinal cords of affected patients. Likewise, the alterations of androgen receptor structure that have been detected in advanced forms of prostate cancer also behave as gain-of-function mutations. In this latter type of mutation, the exquisite specificity of the normal androgen receptor is relaxed and the mutant receptors can be activated by a variety of steroidal and non-steroidal ligands.  相似文献   

8.
Estrogens upregulate estrogen receptor (ER) and progesterone receptor (PR) gene expression in endometrium immediately before ovulation to prepare it for nurturing embryos. Most in vitro model systems have lost the ability to upregulate expression of the ER gene in response to estradiol (E2) or the ability to express the ER gene at all. Here, we used explant cultures from control and E2-treated ewes and assessed expression of four genes (ER, PR, glyceraldehyde 3-phosphate dehydrogenase [GAPDH], and cyclophilin [CYC] genes) that are upregulated by E2 in vivo on Northern blots. In cultures from control and E2-treated ewes, ER and PR messenger ribonucleic acid (mRNA) levels dropped significantly during 24 h of culture in the absence of E2. Glyceraldehyde 3-phosphate dehydrogenase mRNA levels increased 300% in explants from control ewes to match the higher levels in the endometrium of the E2-treated ewe (in vivo and in explant culture). The only effect of E2 in the explant cultures was to prevent the decrease in PR mRNA. The new selective ER modulator, EM-800 (EM), decreased ER and PR mRNA levels in explants from control ewes but upregulated GAPDH and CYC mRNA levels. The EM treatment in vitro mimicked that of E2 by increasing the half-life of ER mRNA in endometrial explants. These data illustrate distinct, gene-specific effects of the explant culture process, E2, and EM on the expression of endometrial genes.  相似文献   

9.
Bombesin receptor subtype-3 (BRS-3) is an orphan G protein-coupled receptor in the bombesin receptor family that still awaits identification of its natural ligand. BRS-3 deficient mice develop a mild late-onset obesity with metabolic defects, implicating BRS-3 plays a role in feeding and metabolism. We describe here the pharmacological characterization of a synthetic compound, 16a, which serves as a potent agonist for BRS-3. This compound is selective for BRS-3 as it does not activate neuromedin B or gastrin-releasing peptide receptors, two most closely related bombesin receptors, as well as a series of other GPCRs. We assessed the receptor trafficking of BRS-3 and found that compound 16a promoted β-arrestin translocation to the cell membrane. Neither central nor peripheral administration of compound 16a affects locomotor activity in mice. Therefore compound 16a is a potential tool to study the function of the BRS-3 system in vitro and possibly in vivo.  相似文献   

10.
Three selective estrogen receptor modulator (SERM) drugs which included 4-OH-tamoxifen (Tam), EM-800 (EM) and GW 5638 (GW) were investigated to determine their ability to inhibit estradiol-responsive gene expression in sheep endometrium. The uteri of ovariectomized ewes (10 ewes per SERM group) were infused with 10−7 M SERMs for 24 h prior to hysterectomy. Five ewes from each group received 50 μg 17β-estradiol (E2) and the remaining five ewes received vehicle 18 h prior to hysterectomy. Northern blot analyses and in situ hybridization demonstrated that E2 treatment increased estrogen receptor (ER), progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and cyclophilin (CYC) mRNA levels in most endometrial cells examined. Tam and GW exhibited characteristics similar to E2 by increasing ER gene expression, but they antagonized the E2-induced increases in PR and CYC mRNA levels. EM acted as an E2-agonist of GAPDH gene expression, but antagonized the E2 up-regulation of ER, PR and CYC gene expression in most endometrial cells. Immunohistochemistry determined that EM decreased ER protein levels in the glandular epithelium, and the SERMs investigated antagonized increases in PR protein levels in endometrium. In conclusion, GW and EM exhibit fewer agonist effects than Tam on endometrial gene expression. EM demonstrated the greatest antagonism of E2-enhanced levels of ER, PR and CYC, likely due to the inhibition of ER gene expression at both mRNA and protein levels.  相似文献   

11.
In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC.  相似文献   

12.
13.
High androgen receptor (AR) level in primary tumour predicts increased prostate cancer-specific mortality. However, the mechanisms that regulate AR function in prostate cancer are poorly known. We report here a new paradigm for the forkhead protein FoxA1 action in androgen signalling. Besides pioneering the AR pathway, FoxA1 depletion elicited extensive redistribution of AR-binding sites (ARBs) on LNCaP-1F5 cell chromatin that was commensurate with changes in androgen-dependent gene expression signature. We identified three distinct classes of ARBs and androgen-responsive genes: (i) independent of FoxA1, (ii) pioneered by FoxA1 and (iii) masked by FoxA1 and functional upon FoxA1 depletion. FoxA1 depletion also reprogrammed AR binding in VCaP cells, and glucocorticoid receptor binding and glucocorticoid-dependent signalling in LNCaP-1F5 cells. Importantly, FoxA1 protein level in primary prostate tumour had significant association to disease outcome; high FoxA1 level was associated with poor prognosis, whereas low FoxA1 level, even in the presence of high AR expression, predicted good prognosis. The role of FoxA1 in androgen signalling and prostate cancer is distinctly different from that in oestrogen signalling and breast cancer.  相似文献   

14.
We report the discovery of highly potent and selective non-steroidal glucocorticoid receptor modulators with PK properties suitable for inhalation. A high throughput screen of the AstraZeneca compound collection identified sulfonamide 3 as a potent non-steroidal glucocorticoid receptor ligand. Further optimization of this lead generated indazoles 30 and 48 that were progressed to characterization in in vivo models. X-ray crystallography was used to gain further insight into the binding mode of selected ligands.  相似文献   

15.
Cyclin E as a coactivator of the androgen receptor   总被引:7,自引:0,他引:7  
Androgens play an important role in the growth of prostate cancer, but the molecular mechanism that underlies development of resistance to antiandrogen therapy remains unknown. Cyclin E has now been shown to increase the transactivation activity of the human androgen receptor (AR) in the presence of its ligand dihydrotestosterone. The enhancement of AR activity by cyclin E was resistant to inhibition by the antiandrogen 5-hydroxyflutamide. Cyclin E was shown to bind directly to the COOH terminus portion of the AB domain of the AR, and to enhance its AF-1 transactivation function. These results suggest that cyclin E functions as a coactivator of the AR, and that aberrant expression of cyclin E in tumors may contribute to persistent activation of AR function, even during androgen ablation therapy.  相似文献   

16.
The androgen‐signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal‐transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand‐independent manner. TH1 also associates with AR at the active androgen‐responsive prostate‐specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen‐induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen‐related developmental, physiological, and pathological processes. J. Cell. Biochem. 109: 1013–1024, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The A3 adenosine receptor (AR) is emerging as an attractive drug target. Antagonists are proposed for the potential treatment of glaucoma and asthma. However, currently available A3AR antagonists are potent in human and some large animals, but weak or inactive in mouse and rat. In this study, we re-synthesized a previously reported A3AR antagonist, DPTN, and evaluated its affinity and selectivity at human, mouse, and rat ARs. We showed that DPTN, indeed, is a potent A3AR antagonist for all three species tested, albeit a little less selective for mouse and rat A3AR in comparison to the human A3AR. DPTN’s Ki values at respective A1, A2A, A2B, and A3 receptors were (nM) 162, 121, 230, and 1.65 (human); 411, 830, 189, and 9.61 (mouse); and 333, 1147, 163, and 8.53 (rat). Its antagonist activity at both human and mouse A3ARs was confirmed in a cyclic AMP functional assay. Considering controversial use of currently commercially available A3AR antagonists in rats and mice, we also re-examined other commonly used and selective A3AR antagonists under the same experimental conditions. The Ki values of MRS1523 were shown to be 43.9, 349, and 216 nM at human, mouse, and rat A3ARs, respectively. MRS1191 and MRS1334 showed incomplete inhibition of [125I]I-AB-MECA binding to mouse and rat A3ARs, while potent human A3AR antagonists, MRS1220, MRE3008F20, PSB10, PSB-11, and VUF5574 were largely inactive. Thus, we demonstrated that DPTN and MRS1523 are among the only validated A3AR antagonists that can be possibly used (at an appropriate concentration) in mouse or rat to confirm an A3AR-related mechanism or function.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11302-021-09823-5.  相似文献   

18.
A 0.6-kb segment of exon 1 of the canine androgen receptor gene contains two polymorphic CAG tandem repeats which encode strings of glutamine homopolymers. The number of CAGs in each tandem repeat was determined by (1) polymerase chain reaction (PCR) amplification of a gene segment containing both repeats, (2) cleavage between repeats with restriction enzyme EcoO109I and (3) fractionation of the restriction fragments containing individual CAG repeats by denaturing polyacrylamide gel electrophoresis (PAGE). Individual genomic DNA samples from 80 unrelated dogs (53 males plus 27 females for a total of 107 X chromosomes) contained 10–12 CAGs in the 5′ repeats and 10–13 CAGs in the 3′ repeats. Thirteen distinct androgen receptor genotypes were identified. Eleven (or 41%) of the 27 unrelated females were heterozygous in one or both repeat regions, whereas all male samples produced single bands as expected for X chromosome markers. A total of seven distinct haplotypes contributed to the 13 genotypes. The ‘polymorphism information content’ or PIC for this seven-allele X chromosome marker was 0.67.  相似文献   

19.
To purify the androgen receptor (AR) efficiently from baculovirus expression system, we fused 6 histidine residues with the N-terminal domain of AR as a tag to specifically bind to Ni+2-affinity column. Our data indicated that adding androgen can increase the binding capacity of his-tag AR to the Ni+2-affinity column, and this increased binding capacity of AR could be due to the exposure of histidine residues of N-terminal domain induced by androgen. The androgen-enhanced binding to Ni+2-column also correlated with the increasing solubility of AR. Electrophoretic mobility shift assay further indicated that only purified AR could interact with androgen response element. Together, our data suggest that the binding of androgen to the hormone binding domain of AR may result in the conformational change of the N-terminal domain of AR and increase the hydrophilic property of AR.  相似文献   

20.
Sequence-specific DNA-protein interactions mediate the regulation of rat androgen receptor (rAR) gene expression. Previously, DNase I footprinting revealed that nuclear factor kappa B (NFkB) binds to region -574 to -554 on rAR promoter and represses its expression. In this study, we demonstrate that when NFkB protein is removed from its site by competitor DNA in DNase I footprinting reaction, a new DNase I protected region is formed overlapping adjacently (-594 to -561). This indicates that another nuclear protein (named here as FRN, factor repressed by NFkB) binds to rAR promoter only after NFkB protein is displaced. By competitive electrophoretic mobility shift assay and mutation analysis, we confirmed the formation of FRN-DNA complex. FRN interacts with a novel sequence on rAR promoter and may play a role in regulation of rAR gene expression in concert with NFkB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号