首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Ketterer 《Mutation research》1988,202(2):343-361
Glutathione (GSH) alone detoxifies electrophiles with an effectiveness which depends on the rate of the reaction and the concentration of GSH. If electrophiles are substrates for GSH transferase isoenzymes, the effectiveness of detoxication is much enhanced due to the increased rate of reaction and it is also independent of GSH concentration to low levels of GSH depletion, since the Km for GSH is approximately 0.1 mM. In this paper detoxication of electrophilic metabolites of the hepatocarcinogen N-methyl-4-aminoazobenzene which are not substrates for GSH transferases and the carcinogenic electrophile derived from the hepatocarcinogen aflatoxin B1 which is a poor substrate is compared with detoxication of electrophiles which are good substrates and which although bacterial mutagens are not carcinogenic in organs containing the appropriate GSH transferases. GSH transferases detoxify not only electrophiles derived from xenobiotics, but also endogenous electrophiles which are usually the consequence of free radical damage in the presence of oxygen to lipids and DNA and include lipid and DNA hydroperoxides and alkenals arising from the decomposition of lipid hydroperoxides. Studies in the rat and other mammals show the GSH transferases to be dimers in which the subunits are members of a gene super-family. There are three, perhaps four multigene families namely, alpha containing subunits 1, 2, 8 and 10; mu containing subunits 3, 4, 6 and 9; pi containing subunit 7 and subunits 5 and 5* which are so far unassigned. Subunit 5* is apparently restricted to the nucleus and is noteworthy for its activity towards DNA hydroperoxides. Studies in the human are not as advanced as in the rat but so far reveal close similarities. The ability of GSH transferases to detoxify electrophiles is important in carcinogenesis at a number of points. They may inhibit initiation and tumour proportion, but they may be advantageous to the developing tumour cell, and may be acquired in increased amounts during malignant progression. In many tumour cells the development of lines resistant to anticancer drugs is associated with an increased expression of GSH transferases, particularly GSH transferase pi in human cells.  相似文献   

2.
DNA peroxidized by exposure to ionizing radiation in the presence of oxygen is a substrate for the Se-independent GSH peroxidase activity of several GSH transferases, GSH transferases 5-5, 3-3 and 4-4 being the most active in the rat liver soluble supernatant fraction (500, 35 and 20 nmol/min per mg of protein respectively) and GSH transferases mu and pi the most active, so far found, in the human liver soluble supernatant fraction (80 and 10 nmol/min per mg respectively). Although the GSH transferase content of the rat nucleus was found to be much lower than that of the soluble supernatant, nuclear GSH transferases are likely to be more important in the detoxification of DNA hydroperoxide produced in vivo. Two nuclear fractions were studied, one extracted with 0.075 M-saline/0.025 M-EDTA, pH 8.0, and the other extracted from the residue with 8.5 M-urea. The saline/EDTA fraction contained subunits 1, 2, 3, 4 and a novel subunit, similar but not identical to 5, provisionally referred to as 5*, in the proportions 40:25:5:5:25 respectively. The 8.5 M-urea-extracted fraction contained principally subunit 5* together with a small amount of subunit 6 in the proportion 95:5 respectively. GSH transferase 5*-5* purified from the 8.5 M-urea extract has the highest activity towards DNA hydroperoxide of any GSH transferase so far studied (1.5 mumol/min per mg). A Se-dependent GSH peroxidase fraction from rat liver was also active towards DNA hydroperoxide; however, since this enzyme accounts for only 14% of the GSH peroxidase activity detectable in the nucleus, GSH transferases may be the more important source of this activity. The possible role of GSH transferases, in particular GSH transferase 5*-5*, in DNA repair is discussed.  相似文献   

3.
Three soluble rat liver glutathione (GSH) transferases A, C and one referred to as 'D', all of which are dimers of Yb subunits [Bass et al. (1977) Biochim. Biophys. Acta, 492, 163-175], have been compared with respect to C-terminal amino acids and tryptic peptide maps. GSH transferases A and 'D' gave different tryptic peptide maps and different C-terminal amino acids, lysine and proline respectively. In each case the number of tryptic peptides is about half of that expected from their lysine and arginine content, and there are 2 mol C-terminal amino acid/mol enzyme. This indicates that GSH transferases A and 'D' represent two different Yb homodimers, which we refer to here as Y1bY1b and Y2bY2b respectively. GSH transferase C is the corresponding heterodimer Y1bY2b since it gives all the tryptic peptides which arise from GSH transferase A and GSH transferase 'D' and also contains both C-terminal lysine and proline. These results provide a structural basis to similar conclusions drawn by Mannervik and Jensson [(1980) J. Biol. Chem. 257, 9909-9912] based on enzymic and immunological comparisons. Tryptic peptide maps show that GSH transferases A and 'D' have considerable homology since there are 23 peptides common to both, 12 peptides unique to A and 8 peptides unique to 'D'. Even so GSH transferase A is selectively induced by a phenobarbitone regime. It is, therefore, concluded that Y1b and Y2b are derived from separate but related genes. A similar conclusion has been drawn concerning the Ya and Yc subunits [Beale et al. (1982) Eur. J. Biochem. 126, 459-463], and a comparison of amino acid compositions, presented here, further suggests a genetic relationship between both pairs of subunits.  相似文献   

4.
In the seminiferous tubules of the rat, as in most mammalian species, the developing germ cells form associations with constant cell composition. These cellular associations or stages follow each other in a regular manner along the seminiferous tubules giving rise to seminiferous epithelial wave. When a freshly isolated unstained seminiferous tubulus of the rat is subjected to transillumination under a stereomicroscope, the different segments of the seminiferous epithelial wave absorb light in a characteristic manner permitting their recognition. Using this technique, small segments with accurately known cell composition can be isolated and studied in living state with phase-contrast microscopy. In several cases, the phase-contrast microscopy gives more information about the cell morphology than conventional histological methods. In this study all major developmental steps from early spermatogonia to mature spermatids have been described. The findings of the present study can be used as reference material in the evaluation and identification of the various cell types of the seminiferous tubules obtained, e.g. by the Staput fractionation method. In addition, the findings may be helpful in the evaluation of spermatogenic and Sertoli cells in culture conditions.  相似文献   

5.
Cytosolic GSH transferases have been purified from rat lung by affinity chromatography followed by chromatofocusing. On the criteria of order of elution, substrate specificity, apparent subunit Mr, sensitivity to inhibitors, and reaction with antibodies, transferase subunits equivalent to subunits 2, 3, and 4, in the binary combinations occurring in liver, were identified. However, subunit 1 (and therefore transferases 1-1 and 1-2) was not detected. The most conspicuous difference is the presence in lung of a new form, eluting at pH 8.7, which is not detected in rat liver. This isoenzyme (transferase "pH 8.7") is characterized by its low apparent subunit Mr and high efficiency in the conjugation of glutathione with anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, considered the ultimate carcinogen of benzo(a)-pyrene.  相似文献   

6.
Six GSH transferases with neutral/acidic isoelectric points were purified from the cytosol fraction of rat liver. Four transferases are class Mu enzymes related to the previously characterized GSH transferases 3-3, 4-4 and 6-6, as judged by structural and enzymic properties. Two additional GSH transferases are distinguished by high specific activities with 4-hydroxyalk-2-enals, toxic products of lipid peroxidation. The most abundant of these two enzymes, GSH transferase 8-8, a class Alpha enzyme, has earlier been identified in rat lung and kidney. The amino acid sequence of subunit 8 was determined and showed a typical class Alpha GSH transferase structure including an N-acetylated N-terminal methionine residue.  相似文献   

7.
Isolation and sequence of a cDNA for human pro-(cathepsin L).   总被引:8,自引:1,他引:7       下载免费PDF全文
The conjugation of 4-nitroquinoline 1-oxide with GSH by human, rat and mouse liver cytosols, by purified mouse GSH transferases and by extrahepatic organ cytosols of male and female mice was investigated. 4-Nitroquinoline 1-oxide was as effectively conjugated by human liver cytosol as was 1-chloro-2,4-dinitrobenzene, at a substrate concentration of 0.1 mM. Mouse isoenzymes composed of Yb1 and Yf subunits exhibited high activity towards 4-nitroquinoline 1-oxide. Human, rat and mouse hepatic activities towards this substrate correlated with the hepatic isoenzyme compositions.  相似文献   

8.
Summary Isolated pieces of seminiferous tubules of adult rats were grown in organ culture for up to 8 weeks in Petri dishes on the surface of nutrient agar. The medium consisted of newborn calf serum, Eagle's minimum essential medium, glutamate and antibiotics. This method allowed observation of the contractions of the seminiferous tubules in the culture. Contractility, light and electron microscopic structure and histochemically demonstrable activities of alkaline phosphatase and ATPase of the tubule walls were studied at 1-week intervals. The contractility and alkaline phosphatase activity were maintained in the tubule wall for 3 weeks, and the activity of ATPase was maintained for 5 weeks. The thin filaments of the myoid cells, which are responsible for the contractility, were seen with the electron microscope in tubules cultured for 5 weeks. The organ culture method described in the present paper seems to be valuable for studies concerning the functioning of the myoid cells of the seminiferous tubules and the possibility that this is regulated by hormones.  相似文献   

9.
Four immunologically distinct subunits were characterized in glutathione (GSH) S-transferases of human liver. Five cationic enzymes (pI 8.9, 8.5, 8.3, 8.2 and 8.0) have an apparently similar subunit composition, and are dimers of 26 500-Mr (A) and 24 500-Mr (B) subunits. A neutral enzyme, pI 6.8, is a dimer of B-type subunits. One of the anionic enzymes, pI 5.5, is also a dimer of 26 500-Mr subunits. However, the 26 500-Mr subunits of this anionic enzyme form are immunologically distinct from the A subunits of the cationic enzymes, and have been designated as A'. Immunoabsorption studies with the neutral enzyme, BB, and the antibodies raised against the cationic enzymes (AB) indicate that A and B subunits are immunologically distinct. Hybridization in vitro of the A and B subunits of the cationic enzymes (AB) results in the expected binary combinations of AA, AB and BB. Studies with the hybridized enzyme forms indicate that only the A subunits express GSH peroxidase activity. A' subunits have maximum affinity for p-nitrobenzyl chloride and p-nitrophenyl acetate, and the B subunits have highest activity towards 1-chloro-2,4-dinitrobenzene. The other anionic form, pI 4.5, present in liver is a heterodimer of 22 500-Mr (C) and B subunits. The C subunits of this enzyme are probably the same as the 22 500-Mr subunits present in human lung and placental GSH transferases. The distinct immunological nature of B and C subunits was also demonstrated by immunoaffinity and subunit-hybridization studies. The results of two-dimensional polyacrylamide-gel-electrophoretic analyses indicate that in human liver GSH transferases, three charge isomers of Mr 26 500 (A type), two charge isomers of Mr 24 500 (B type) and two charge isomers of Mr 22 500 (C type) subunits are present.  相似文献   

10.
GSSG selectively elutes two GSH transferases from a mixture of rat GSH transferases bound to a GSH-agarose affinity matrix. One is a form of GSH transferase 1-1 and the other is shown to be GSH transferase 8-8. By using tissues that lack this form of GSH transferase 1-1 (e.g. lung), GSH transferase 8-8 may thus be purified from cytosol in a single step. Quantitative analysis of the tissue distribution of GSH transferase 8-8 was obtained by h.p.l.c.  相似文献   

11.
1. The activities of glutathione (GSH) transferases in male, spontaneously hypertensive rats (SHR) and stroke-prone rats (SHR-SP) were different from those of normotensive male Wistar Kyoto rats (WKY). 2. These alterations of the enzyme activities were partly due to the changes in the levels of subunits 2 and 4. 3. Subunit selective alterations were observed in pathophysiological conditions, namely spontaneous hypertension. 4. The sex-related difference of GSH transferases in these animals was also discussed.  相似文献   

12.
The development of rete testis in the rat, rabbit and guinea pig foetuses has been studied, as well as the influence of prolactin and thyrotropin on differentiation of its cells. It was shown that the rete testis tubules, as well as the seminiferous tubules develop from sex cords, which were derived from coelomic epithelium cells and gonocytes. The development of seminiferous tubules and rete testis was described at various stages of prenatal ontogenesis. Thyrotropin and prolactin exert different effects on differentiation of the rete testis cells: the former increases the mitotic activity of gonocytes and the latter increases that of epithelial cells and enhances degenerative processes in primary germ cells.  相似文献   

13.
Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.  相似文献   

14.
Endogenous testosterone concentrations in rat seminiferous tubules were measured in relation to different stages of the cycle of the seminiferous epithelium. For this purpose, the seminiferous tubules were mechanically separated from the interstitial tissue on a cooled (1 degree C) petri dish under a stereomicroscope without added medium. After recognition of the stages of the cycle by transillumination, the specimens were rapidly transferred by dry forceps into test tubes for testosterone radioimmunoassay. The results of the dry dissection method were compared with measurements on tubules that were kept after separation in phosphate buffered saline (PBS, pH 7.4), in order to reveal the possible leakage of testosterone from the tubules. The maximal concentration of testosterone per unit length of seminiferous tubule was found in stages VII and VIII of the cycle (288 +/- 60 fmol/cm, mean +/- SEM, n = 12), and the minimal in stages IX-XII (219 +/- 57 fmol/cm, P less than 0.01). If the levels were correlated with unit volumes of the seminiferous tubules, identical concentrations of testosterone (521-542 fmol/mm3, approx. 500 nmol/l) were found in the different stages of the cycle. Despite the similarity of testosterone concentrations in the different parts of the seminiferous tubules the local concentrations of biologically active (i.e. free) testosterone may be modulated by extracellular and intracellular androgen binding components.  相似文献   

15.
Homogeneous preparations of the glutathione transferases from rat liver have been tested for their ability to catalyze a number of diverse nucleophilic reactions of GSH. Although disulfide interchange with GSSG or L-cystine, and cis-trans isomerization of maleic acid, are clearly promoted by thiols in solution, the reactions were not catalyzed by the glutathione transferases. In contrast, certain more hydrophobic analogs of these compounds were found to serve as substrates. The transferases also catalyze the glutathione-dependent release of p-nitrophenol from p-nitrophenyl acetate and p-nitrophenyl trimethylacetate. These observations are consistent with the formulation that catalysis may result from close juxtaposition of sufficiently electrophilic, nonpolar compounds with GSH on the enzyme surface.  相似文献   

16.
Using a variation of a previously published method for manipulating vitamin A levels, we obtained synchronized rat testes and determined the frequency of stages of the seminiferous epithelium in each rat. In this study, we have demonstrated a method for quantitative analysis of the synchrony. The degree of synchronization was expressed as a fraction of the cycle of the seminiferous epithelium, and thus in terms not influenced by the different durations of the stages of this cycle. The median stage about which the tubules were synchronized was calculated. This method may be used to compare the effects of different synchronizing treatments, which may be subtle, and to study various aspects of spermatogenesis in the synchronized testes. For example, the duration of the cycle of the seminiferous epithelium in synchronized testes is estimated to be 12.5 days.  相似文献   

17.
《FEBS letters》1985,184(1):139-143
A previously uncharacterized glutathione (GSH) transferase which is not apparent in normal liver, accounts for at least 25% of the soluble GSH transferase content of primary hepatomas induced by feeding N,N-dimethyl-4-aminoazobenzene. This enzyme is readily isolated, has an isoelectric point of 6.8, is composed of two identical subunits of apparent Mr 26 000 and has GSH transferase activity towards a number of substrates including benzo(a)pyrene-7,8-diol-9,10-oxide. It is unusual in that it has GSH peroxidase activity towards fatty acid hydroperoxides but not towards the model substrates, cumene hydroperoxide and t-butyl hydroperoxide. It has been shown by tryptic peptide analysis to be distinct from GSH transferases composed of subunits 1, 2, 3,4 or 6 and has been designated GSH transferase 7-7.  相似文献   

18.
Steroid sulfatase (STS) activity was studied in Long-Evans rat testis. The affinity of the enzyme was shown to increase during postnatal development and to be always higher in purified Leydig cells than in seminiferous tubules. STS activity appeared to be higher in the seminiferous tubules at the earlier stages. In vivo injection of 100 IU hCG resulted in a decrease in the affinity and an increase in the activity of the enzyme expressed in Leydig cells with no such modification in seminiferous tubules. This suggests that STS could play a regulatory role in testosterone production by Leydig cells.  相似文献   

19.
Purified glutathione(GSH)-S-transferases A, B and C from rat liver are inhibited by triethyltin (SnEt3). With 1-chloro-2,4-dinitro benzene (CDNB) as the limiting substrate the inhibition is competitive in each case. At a GSH concentration of 5 . 10(-3) M the inhibition constants for transferases A and C at 25 degrees C are similar and very low, 3.2 . 10(-8) M and 5.6 . 10(-8) M respectively, whereas for transferase B the inhibition constant is 3.5 . 10(-5) M. Equilibrium-dialysis experiments carried out at 4 degrees C in the absence of GSH give apparent dissociation constants of 7.1 . 10(-4) M and 3.4 . 10(-4) M for transferases A and B respectively, but if 5 . 10(-3) M glutathione is included in the dialysis solutions these values fall to 2.0 . 10(-7) M and 2.6 . 10(-5) M, which are within an order of magnitude of the kinetic Ki-values. Chromatographic experiments with Sephadex G-10 show that GSH and SnEt3 interact in aqueous solution under the conditions of the enzyme-kinetic and equilibrium-dialysis experiments. It is suggested that the inhibited enzymes are in the form of ternary complexes, enzyme-GSH-SnEt3, in which GSH and SnEt3 may or may not interact directly; or are possibly quaternary complexes, enzyme-(GSH)2-SnEt3. SnEt3 could be valuable as a selective inhibitor of transferases A and C in mixtures of the three transferases.  相似文献   

20.
Expression of mRNAs in the rat testis encoding cyclic AMP (cAMP)-dependent protein kinases (PKAs) was studied. A microdissection method was used to isolate 10 pools of seminiferous tubules representing various stages of the cycle of the seminiferous epithelium in combination with Northern blots and in situ hybridization. The results showed a differential expression of the four isoforms of the regulatory subunits (PKA-R) at various stages of the cycle. RI alpha mRNA was detected at approximately the same levels at all stages while expression of RI beta mRNA was low at stages XIII-III, started to increase at stages IV-V, and reached a maximum at stages VIII-XI. The level of RII alpha mRNA was low at stages II-VI, increased markedly at stage VIIa,b, and reached maximal levels at stages VIIc,d and VIII, followed by a reduced expression at later stages, RII beta mRNA levels increased significantly at stage VI with maximal levels at stages VII and VIII. In situ hybridization of sections from the adult rat testis revealed RI alpha mRNA in the layers of pachytene spermatocytes and round spermatids of all stages. RI beta mRNA was detected over late pachytene spermatocytes and round spermatids of stages VII-XIII. RII alpha mRNA was seen in the layers of round spermatids of stages VII-VIII and elongating spermatids of later stages while RII beta mRNA was detected only in the round spermatid region of stages VII-VIII and in some tubules of stages I-VI. These data show that mRNAs encoding PKA-R are expressed in a stage-specific manner in differentiating male germ cells with different patterns of expression for each subunit; this suggests specific roles for these protein kinases at different times of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号