共查询到20条相似文献,搜索用时 31 毫秒
1.
van Zanten M Ritsema T Polko JK Leon-Reyes A Voesenek LA Millenaar FF Pieterse CM Peeters AJ 《Planta》2012,235(4):677-685
Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone
ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related
phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced
hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the
gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce
hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene-
and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application
of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that
both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many
tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA
is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement,
we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways. 相似文献
2.
Martijn van Zanten L. Basten Snoek Evelien van Eck-Stouten Marcel C.G. Proveniers Keiko U. Torii Laurentius A.C.J. Voesenek Anton J.M. Peeters Frank F. Millenaar 《The Plant journal : for cell and molecular biology》2010,61(1):83-95
Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA , controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity. 相似文献
3.
Shade-avoidance syndrome is characterized by the formation of elongated petioles and unexpanded leaf blades under low-intensity light, but the genetic basis for these responses is unknown. In this study, two-dimensional mutational analysis revealed that the gene for phytochrome B, PHYB, had opposing effects in the leaf petioles and leaf blades of Arabidopsis, while the ROT3, ACL2, and GAI genes influenced the length of leaf petioles more significantly than the length of leaf blades. Anatomical analysis revealed that the PHYB and ACL2 genes control the length of leaf petioles exclusively via control of the length of individual cells, while the GAI, GA1 and ROT3 genes appeared to control both the elongation and proliferation of petiole cells, in particular, under strong light. By contrast, both the size and the number of cells were affected by the mutations examined in leaf blades. The differential control of leaf petiole length and leaf blade expansion is discussed. 相似文献
4.
5.
High-throughput lipidomic profiling provides a sensitive approach for discovering minor lipid species. By using an advance in electrospray ionization tandem mass spectrometry, a large set of phospholipid molecular species(126 species)with high resolution were identified from Arabidopsis seedling;of them 31 species are newly identified(16 are unique in plants),including 13 species of phosphatidic acid(PA), nine phosphatidylcholine, six phosphatidylinositol and three phosphatidylserine. Further analysis of the lipidomic profile reveals dynamics of phospholipids and distinct species alterations during seedling development. PA molecules are found at the lowest levels in imbibition and follow an increasing trend during seedling growth, while phosphatidylethanolamine(PE) molecules show the opposite pattern with highest levels at imbibition and a general decreasing trend at later stages. Of PA molecular species, 34:2-, 34:3-, 36:4-, 36:5-, 38:3- and 38:4-PA increase during radicle emergence, and 34:2- and 34:3-PA reach highest levels during hypocotyl and cotyledon emergence from the seed coat. Conversely, molecular species of PE show higher levels in imbibition and decrease in later stages. These results suggest the crucial roles of specific molecular species and homeostasis of phospholipid molecules in seedling growth and provide insights into the mechanisms of how phospholipid molecules are involved in regulating plant development. 相似文献
6.
Martijn van Zanten L. Basten Snoek Evelien van Eck-Stouten Marcel C. G Proveniers Keiko U Torii Laurentius A. C. J Voesenek Frank F Millenaar Anton J. M Peeters 《Plant signaling & behavior》2010,5(3):284-286
Plants can respond quickly and profoundly to changes in their environment. Several species, including Arabidopsis thaliana, are capable of differential petiole growth driven upward leaf movement (hyponastic growth) to escape from detrimental environmental conditions. Recently, we demonstrated that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA, explains a major effect Quantitative Trait Locus (QTL) for ethylene-induced hyponastic growth in Arabidopsis. Here, we demonstrate that ERECTA controls the hyponastic growth response to low light intensity treatment in a genetic background dependent manner. Moreover, we show that ERECTA affects low light-induced hyponastic growth independent of Phytochrome B and Cryptochrome 2 signaling, despite that these photoreceptors are positive regulators of low light-induced hyponastic growth.Key words: hyponastic growth, petiole, Arabidopsis, low light, ERECTA, differential growth, phytochrome B, cryptochrome 2Plants must adjust growth and reproduction to adverse environmental conditions. Among the strategies that plants employ to escape from unfavorable conditions is differential petiole growth-driven upward leaf movement, called hyponastic growth. Arabidopsis thaliana is able to exhibit a marked hyponastic response upon flooding, which is triggered by endogenous accumulation of the gaseous phytohormone ethylene.1 Moreover, a similar response is triggered upon low light intensity perception and in response to supra-optimal temperatures.2–5 By tilting the leaves to a more vertical position during submergence and shading, the plants restore contact with the atmosphere and light, respectively. The kinetics of the hyponastic growth response induced by the various stimuli is remarkably similar. This led to the hypothesis that shared functional genetic components may be employed to control hyponastic growth. Yet, at least part of the signaling cascades is parallel, as the hormonal control of the response differs between the stimuli. Low light-induced hyponastic growth for example does not require ethylene action.2 Whereas the response to heat is antagonized by this hormone.5 The abiotic stress hormone abscisic acid (ABA) antagonizes ethylene-induced hyponastic growth and stimulates heat-induced hyponastic growth.5,6 Moreover, ethylene-induced hyponasty does not involve auxin action7 whereas both heat- and low light-induced hyponasty require functional auxin signaling and transport components.2,5In our recent paper, published in The Plant Journal,8 we employed Quantitative Trait Locus (QTL) analysis to identify loci involved in the control of ethylene-induced hyponastic petiole growth. By analyzing induced mutants and by complementation analysis of naturally occurring mutant accessions, we found that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA (ER) is a positive regulator of ethylene-induced hyponastic growth and most likely is causal to one of the identified QTLs. In addition, we demonstrated that the ER dependency is not via ER mediated control of ethylene production or sensitivity.Since low light-induced hyponasty does not require ethylene action,2 ER may be part of the proposed shared signaling cascade leading to hyponastic growth where ethylene and low light signals meet. Therefore, we studied low light intensity-induced hyponasty in various erecta mutants. Moreover, natural occurring er mutant accessions complemented with a functional, Col-0 derived, ER allele were tested. The response of Lan-0 (Lan-0; with functional ER) to low light was indistinguishable from the response of Landsberg erecta (Ler) (Fig. 1A). However, complemented Ler (ER-Ler) showed an enhanced response compared to Ler (Fig. 1B). The response of mutant er105 was slightly attenuated compared to the wild type Columbia-0 (Fig. 1C). Mutant er104, however, showed an indistinguishable hyponastic growth phenotype to low light compared to the wild type Wassilewskija-2 (Ws-2) (Fig. 1D). Complementation of the natural occurring erecta mutant accession Vancouver-0 (Van-0) resulted in an enhanced hyponastic growth response to low light (Fig. 1E), whereas this was not the case for Hiroshima-1 (Hir-1) (Fig. 1F). Together, these data suggest that ER acts as positive regulator of low light-induced hyponastic growth and therefore may be part of the shared signaling cascade towards differential petiole growth. Yet, the effect is strongly dependent on the genetic background since the effects were not observed in every accession tested.Open in a separate windowFigure 1ERECTA involvement in low light-induced hyponasty. Effect of exposure to low light (spectral neutral reduction in light intensity from 200 to 20 µmol m−2 s−1) on the kinetics of hyponastic petiole growth in Arabidopsis thaliana. (A) mutant (circles) Ler and wild type (dashed line) Lan-0, (B) Ler and Ler complemented (ER-; squares) with the Col-0 ERECTA allele (ER-Ler), (C) er105 and Col-0 wild type, (D) er104 and Ws-2 wild type, (E) natural mutant Van-0 and Van-0 complemented with the Col-0 ER allele (ER-Van-0), (F) natural mutant Hir-1 and Hir-1 complemented with the Col-0 ER allele (ER-Hir-1). Petiole angles were measured using time-lapse photography and subsequent image analysis. Data is pairwise subtracted, which corrects for diurnal petiole movement in control conditions. For details on this procedure, growth conditions and materials, transformation protocol, treatments, data acquirement and all analyses see.1,8 Error bars represent standard errors; n ≥ 12.Phytochrome B (PhyB) and Cryptochrome 2 (Cry2) photoreceptor proteins are required for a full induction of low light-induced hyponastic growth.2 We transformed the phyb5 cry2 mutant9 (Ler genetic background) with Col-0 derived ER. This complementation did not restore the ability of phyb5 cry2 to induce hyponastic growth to neither ethylene (data not shown) nor low light conditions (Fig. 2A). Mutant phyb5 cry2 plants have a typical constitutive shade avoidance phenotype, reflected by severely elongated organs. This includes enhanced inflorescence and silique length and thin inflorescences (Fig. 2B-D). Complementation with ER resulted in a significant additional effect on these parameters (Fig. 2B-D). Together, this suggests that ER is not an integral part of PhyB nor Cry2 signaling with respect to (hyponastic) growth. Moreover, PhyB and Cry2 control of plant architecture does not require ER action. Rather, ER seems to mediate growth via genetic interaction with light-reliant growth mechanisms, instead of being downstream of photoreceptor action. Studies on the effects of ER on shade avoidance responses and various hormone responses, including cytokinin and auxin, led to the similar conclusion, suggesting a possible role for ER as a molecular hub coordinating light- and hormone-mediated plant growth.10,11 One could speculate that ER fine-tunes other (than light) environmental clues with light signaling components. A comparable conclusion was drawn previously for gibberellin (GA) reliant growth mechanisms, as er enhanced the negative effect on plant size of the short internode (shi) mutation12 and er represses the positive effect of the spindly mutation in a GA independent manner.13Open in a separate windowFigure 2Effects of ERECTA on light signaling. (A) Effect of exposure to low light (spectral neutral reduction in light intensity from 200 to 20 µmol m−2 s−1) on the kinetics of hyponastic petiole growth of Ler (dashed lines), the photoreceptor double mutant phyb5 cry2 (circles) and this mutant complemented with the Col-0 ERECTA (ER-phyb cry2; squares). For details see legend Figure 1. (B) Plant height, (C) silique length and (D) inflorescence stem thickness of the above mentioned lines. These parameters were measured when the last flower on the plant developed a silique. Plant height was measured from root/shoot junction to inflorescence top. Stem thickness was measured ∼1 cm above the root/shoot junction with a caliper and silique lengths were measured from representative pedicels in the top ∼10 cm of the main inflorescence stem. Error bars represent standard errors; n ≥ 12. Significance levels; *p < 0.05; **p < 0.01; ***p < 0.001; ns = non significant, by Students t-test. 相似文献
7.
Jost R Altschmied L Bloem E Bogs J Gershenzon J Hähnel U Hänsch R Hartmann T Kopriva S Kruse C Mendel RR Papenbrock J Reichelt M Rennenberg H Schnug E Schmidt A Textor S Tokuhisa J Wachter A Wirtz M Rausch T Hell R 《Photosynthesis research》2005,86(3):491-508
The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by
macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate
regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more
than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes
were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since
numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as
of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced
sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved
in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only
an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were
thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time
how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed
as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway. 相似文献
8.
Polko JK van Zanten M van Rooij JA Marée AF Voesenek LA Peeters AJ Pierik R 《The New phytologist》2012,193(2):339-348
? Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). ? To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. ? Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. ? This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole. 相似文献
9.
Mauch F Mauch-Mani B Gaille C Kull B Haas D Reimmann C 《The Plant journal : for cell and molecular biology》2001,25(1):67-77
Salicylic acid (SA) plays a central role as a signalling molecule involved in plant defense against microbial attack. Genetic manipulation of SA biosynthesis may therefore help to generate plants that are more disease-resistant. By fusing the two bacterial genes pchA and pchB from Pseudomonas aeruginosa, which encode isochorismate synthase and isochorismate pyruvate-lyase, respectively, we have engineered a novel hybrid enzyme with salicylate synthase (SAS) activity. The pchB-A fusion was expressed in Arabidopsis thaliana under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter, with targeting of the gene product either to the cytosol (c-SAS plants) or to the chloroplast (p-SAS plants). In p-SAS plants, the amount of free and conjugated SA was increased more than 20-fold above wild type (WT) level, indicating that SAS is functional in Arabidopsis. P-SAS plants showed a strongly dwarfed phenotype and produced very few seeds. Dwarfism could be caused by the high SA levels per se or, perhaps more likely, by a depletion of the chorismate or isochorismate pools of the chloroplast. Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment. Although this modest increase in total SA content did not strongly induce the resistance marker PR-1, it resulted nevertheless in enhanced disease resistance towards a virulent isolate of Peronospora parasitica. Increased resistance of c-SAS lines was paralleled with reduced seed production. Taken together, these results illustrate that SAS is a potent tool for the manipulation of SA levels in plants. 相似文献
10.
Zohreh Heydarian Rashmi Sasidharan Marjolein C. H. Cox Ronald Pierik Laurentius A. C. J. Voesenek Anton J. M. Peeters 《Annals of botany》2010,106(3):429-435
Background and Aims
Complete submergence is an important stress factor for many terrestrial plants, and a limited number of species have evolved mechanisms to deal with these conditions. Rumex palustris is one such species and manages to outgrow the water, and thus restore contact with the atmosphere, through upward leaf growth (hyponasty) followed by strongly enhanced petiole elongation. These responses are initiated by the gaseous plant hormone ethylene, which accumulates inside plants due to physical entrapment. This study aimed to investigate the kinetics of ethylene-induced leaf hyponasty and petiole elongation.Methods
Leaf hyponasty and petiole elongation was studied using a computerized digital camera set-up followed by image analyses. Linear variable displacement transducers were used for fine resolution monitoring and measurement of petiole growth rates.Key Results
We show that submergence-induced hyponastic growth and petiole elongation in R. palustris can be mimicked by exposing plants to ethylene. The petiole elongation response to ethylene is shown to depend on the initial angle of the petiole. When petiole angles were artificially kept at 0°, rather than the natural angle of 35°, ethylene could not induce enhanced petiole elongation. This is very similar to submergence studies and confirms the idea that there are endogenous, angle-dependent signals that influence the petiole elongation response to ethylene.Conclusions
Our data suggest that submergence and ethylene-induced hyponastic growth and enhanced petiole elongation responses in R. palustris are largely similar. However, there are some differences that may relate to the complexity of the submergence treatment as compared with an ethylene treatment. 相似文献11.
Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis 总被引:1,自引:0,他引:1
Annemart Koornneef Adriaan Verhage Antonio Leon-Reyes Reinier Snetselaar LC Van Loon Corné MJ Pieterse 《Plant signaling & behavior》2008,3(8):543-546
The plant signaling hormones salicylic acid (SA) and jasmonic acid (JA) are regulators of inducible defenses that are activated upon pathogen or insect attack. Cross-talk between SA- and JA-dependent signaling pathways allows a plant to finely tune its response to the attacker encountered. In Arabidopsis, pharmacological experiments revealed that SA exerts a strong antagonistic effect on JA-responsive genes, such as PDF1.2, indicating that the SA pathway can be prioritized over the JA pathway. SA-mediated suppression of the JA-responsive PDF1.2 promoter was exploited for setting up a genetic screen aiming at the isolation of signal transduction mutants that are impaired in this cross-talk mechanism. The PDF1.2 promoter was fused to the herbicide resistance gene BAR to allow for life/death screening of a population of mutagenized transgenic plants. Non-mutant plants should survive herbicide treatment when methyl jasmonate (MeJA) is applied, but suppression of the JA response by SA should be lethal in combination with the herbicide. Conversely, crucial SA/JA cross-talk mutants should survive the combination treatment. SA effectively suppressed the expression of the PDF1.2::BAR transgene. However, suppression of the BAR gene did not result in suppression of herbicide resistance. Hence, a screening method based on quantitative differences in the expression of a reporter gene may be better suited to identify SA/JA cross-talk mutants. Here, we demonstrate that the PDF1.2::GUS reporter will be excellently suited in this respect.Key words: plant defense, salicylic acid, jasmonic acid, cross-talk, mutant screen, Arabidopsis 相似文献
12.
The ability of a single genotype to generate different phenotypes in disparate environments is termed phenotypic plasticity, which reflects the interaction of genotype and environment on developmental processes. However, there is controversy over the definition of plasticity genes. The gene regulation model states that plasticity loci influence trait changes between environments without altering the means within a given environment. Alternatively, the allelic sensitivity model argues that plasticity evolves due to selection of phenotypic values expressed within particular environments; hence plasticity must be controlled by loci expressed within these environments. To identify genetic loci controlling phenotypic plasticity and address this controversy, we analyzed the plasticity of glucosinolate accumulation under methyl jasmonate (MeJa) treatment in Arabidopsis thaliana. We found genetic variation influencing multiple MeJa signal transduction pathways. Analysis of MeJa responses in the Landsberg erecta x Columbia recombinant inbred lines identified a number of quantitative trait loci (QTL) that regulate plastic MeJa responses. All significant plasticity QTL also impacted the mean trait value in at least one of the two "control" or "MeJa" environments, supporting the allelic sensitivity model. Additionally, we present an analysis of MeJa and salicylic acid cross-talk in glucosinolate regulation and describe the implications for glucosinolate physiology and functional understanding of Arabidopsis MeJa signal transduction. 相似文献
13.
Characterization of the interaction between Oidium heveae and Arabidopsis thaliana 总被引:2,自引:0,他引:2 下载免费PDF全文
Shuangshuang Mei Shuguo Hou Haitao Cui Feng Feng Wei Rong 《Molecular Plant Pathology》2016,17(9):1331-1343
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector‐triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA‐independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2‐2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees. 相似文献
14.
15.
Plants have tremendous capacity to adjust their morphology, physiology and metabolism in response to changes in growing conditions. Thus, analysis solely of plants grown under constant conditions may give partial or misleading indications of their responses to the fluctuating natural conditions in which they evolved. To obtain data on growth condition‐dependent differences in metabolite levels, we compared leaf metabolite profiles of Arabidopsis thaliana growing under three constant laboratory light conditions: 30 [low light (LL)], 300 [normal light (NL)] and 600 [high light (HL)]µmol photons m?2 s?1. We also shifted plants to the field and followed their metabolite composition for 3 d. Numerous compounds showed light intensity‐dependent accumulation, including: many sugars and sugar derivatives (fructose, sucrose, glucose, galactose and raffinose); tricarboxylic acid (TCA) cycle intermediates; and amino acids (ca. 30% of which were more abundant under HL and 60% under LL). However, the patterns differed after shifting NL plants to field conditions. Levels of most identified metabolites (mainly amino acids, sugars and TCA cycle intermediates) rose after 2 h and peaked after 73 h, indicative of a ‘biphasic response’ and ‘circadian’ effects. The results provide new insight into metabolomic level mechanisms of plant acclimation, and highlight the role of known protectants under natural conditions. 相似文献
16.
Although the method of tissue culturing has been used widely in practice for a long time, and there are numerous hypotheses to explain the dedifferentiation phenomenon in the tissue culturing, many details of mechanism of dedifferentiation remain unclear. In the study, dedifferentiation process is initiated in the residual procambium, followed by the procambium-derived cells and finally xylem parenchyma cells under the culturing of Arabidopsis thaliana petiole explants. The procambium may induce its derivative cells to undergo dedifferentiation, which in turn induce the xylem parenchyma cells to dedifferentiate. This phenomenon is very similar to the activity of interfascicular cambium induced by intrafascicular cambium in secondary growth of plant stems. In the present study, only the paired procambium-derived cells and xylem parenchyma truly underwent dedifferentiation, whereas the initial changes in the procambium simply recovered the inherent meristematic capacity of those cells. In transverse section of petiole of A. thaliana, parenchyma cells outside the vascular bundle did not participate in dedifferentiation and gradually disintegrated under the culture conditions. Obviously, the time for initiation and difficulty underlain for undergoing dedifferentiation are dependent on the differential degree and location of parenchyma cells in the petiole. 相似文献
17.
Bartoli CG Yu J Gómez F Fernández L McIntosh L Foyer CH 《Journal of experimental botany》2006,57(8):1621-1631
The effects of growth irradiance and respiration on ascorbic acid (AA) synthesis and accumulation were studied in the leaves of wild-type and transformed Arabidopsis thaliana with modified amounts of the mitochondrial alternative oxidase (AOX) protein. Plants were grown under low (LL; 50 micromol photons m(-2) s(-1)), intermediate (IL; 100 micromol photons m(-2) s(-1)), or high (HL; 250 micromol photons m(-2) s(-1)) light. Increasing growth irradiance progressively elevated leaf AA content and hence the values of dark-induced disappearance of leaf AA, which were 11, 55, and 89 nmol AA lost g(-1) fresh weight h(-1), from LL-, IL-, and HL-grown leaves, respectively. When HL leaves were supplied with L-galactone-1,4-lactone (L-GalL; the precursor of AA), they accumulated twice as much AA and had double the maximal L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activities of LL leaves. Growth under HL enhanced dehydroascorbate reductase and monodehydroascorbate reductase activities. Leaf respiration rates were highest in the HL leaves, which also had higher amounts of cytochrome c and cytochrome c oxidase (CCO) activities, as well as enhanced capacity of the AOX and CCO electron transport pathways. Leaves of the AOX-overexpressing lines accumulated more AA than wild-type or antisense leaves, particularly at HL. Intact mitochondria from AOX-overexpressing lines had higher AA synthesis capacities than those from the wild-type or antisense lines even though they had similar L-GalLDH activities. AOX antisense lines had more cytochrome c protein than wild-type or AOX-overexpressing lines. It is concluded that regardless of limitations on L-GalL synthesis by regulation of early steps in the AA synthesis pathway, the regulation of L-GalLDH activity via the interaction of light and respiratory controls is a crucial determinant of the overall ability of leaves to produce and accumulate AA. 相似文献
18.
Irradiation of Arabidopsis thaliana ecotypes C24, Wassilewskija (Ws) and Columbia-0 (Col-0) with supplementary ultraviolet-A+B (UV-A+B) radiation revealed ecotype-specific differences in expression of the gene for the pathogenesis-related protein PR-5. C24 showed an increased expression level of PR-5 (5- and 20-fold higher compared with Col-0 and Ws, respectively). Expression of other molecular markers such as CHS (encoding chalcone synthase), MEB5.2 [encoding a gene strongly up-regulated by ultraviolet-B (UV-B)] and PYROA [encoding a pyridoxine (Vitamin B6) biosynthesis enzyme] only showed slight differences between ecotypes. Oxidative stress during UVA+B exposure was monitored by staining for H2O2. This analysis also revealed important ecotype-specific differences. 'H2O2 hot spots' were found in C24, whereas an even distribution of H2O2 was found in Ws and Col-0. Necrotic lesions also appeared on C24 leaves after prolonged UV-B exposure. There was a reverse correlation between the H2O2 steady-state concentration and the PR-5 gene expression; Ws showed the highest level of H2O2 accumulation but the lowest expression level of the PR-5 gene. Furthermore, application of paraquat on the rosettes led to similar PR-5 expression and H2O2 accumulation patterns as were found after UV-A+B irradiation. The observed ecotypic differences were also reflected in a statistically significant UV-B-dependent decrease in biomass, rosette size and leaf area for Ws, but not for C24 and Col-0. Our results show that a significant ecotype-specific genetic variability in general UV-B responses in Arabidopsis exists. Moreover, the signal transduction or gene regulation pathway for PR-5 differs from the other molecular markers used in this study. 相似文献
19.
20.
Villiers F Jourdain A Bastien O Leonhardt N Fujioka S Tichtincky G Parcy F Bourguignon J Hugouvieux V 《Journal of experimental botany》2012,63(3):1185-1200
Plant hormones, in addition to regulating growth and development, are involved in biotic and abiotic stress responses. To investigate whether a hormone signalling pathway plays a role in the plant response to the heavy metal cadmium (Cd), gene expression data in response to eight hormone treatments were retrieved from the Genevestigator Arabidopsis thaliana database and compared with published microarray analysis performed on plants challenged with Cd. Across more than 3000 Cd-regulated genes, statistical approaches and cluster analyses highlighted that gene expression in response to Cd and brassinosteroids (BR) showed a significant similarity. Of note, over 75% of the genes showing consistent (e.g. opposite) regulation upon BR and Brz (BR biosynthesis inhibitor) exposure exhibited a BR-like response upon Cd exposure. This phenomenon was confirmed by qPCR analysis of the expression level of 10 BR-regulated genes in roots of Cd-treated wild-type (WT) plants. Although no change in BR content was observed in response to Cd in our experimental conditions, adding epibrassinolide (eBL, a synthetic brassinosteroid) to WT plants significantly enhanced Cd-induced root growth inhibition, highlighting a synergistic response between eBL and the metal. This effect was specific to this hormone treatment. On the other hand, dwarf1 seedlings, showing a reduced BR level, exhibited decreased root growth inhibition in response to Cd compared with WT, reversed by the addition of eBL. Similar results were obtained on Brz-treated WT plants. These results argue in favour of an interaction between Cd and BR signalling that modulates plant sensitivity, and opens new perspectives to understand the plant response to Cd. 相似文献