首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats bearing a 5-day intracranial (i.c.) syngeneic glioma were treated with a subcutaneous (s.c.) vaccination consisting of irradiated glioma cells or a multimodality approach composed of radiotherapy plus s.c. vaccination. Vaccination of rats harboring a T9 glioma with 5 x 10(6) irradiated T9.F glioma cells (a clone derived from the T9 glioblastoma cell line) resulted in a marked enhancement of i.c. glioma growth and a significant decrease in survival. Histopathology of the tumors from vaccinated rats revealed a massive glioma composed of healthy tumor tissue lacking any marked inflammation, edema or hemorrhage. Analysis of the tumor-infiltrating mononuclear cells indicated that gliomas from vaccinated rats contained a 10-fold greater lymphoid infiltrate per milligram of tumor as compared to tumors from non-vaccinated rats, suggesting that the vaccination had induced immune cells to localize to the i.c. glioma. Combined treatment consisting of 15 Gy of whole head irradiation of the 5-day glioma followed by vaccination with T9.F cells resulted in a significant increase in survival compared to that of non-treated rats, 45% of which remained tumor-free. Microscopic evaluation in survivors of the tumor implantation site revealed the presence of hemosiderin-laden macrophages and other mononuclear cells, with the absence of tumor cells within the residual lesion. When survivors were challenged s.c. with viable T9.F glioma cells, a delayed-type hypersensitivity (DTH) reaction appeared at the challenge site. T cells purified from these rats proliferated and secreted Th(1)-associated cytokines when stimulated with irradiated T9.F glioma cells, and lysed T9.F target cells. In contrast, when these rats were challenged s.c. with the unrelated MadB106 adenocarcinoma, tumor formation was observed. These findings indicate that the treatment of an established i.c. glioma with a cellular vaccination alone may induce enhanced tumor growth; however, when the vaccination is combined with radiation therapy, the results are beneficial in terms of increased survival time or complete remission that is accompanied by the development of tumor-specific cellular immunity.  相似文献   

2.
In recent years, magnetic resonance imaging (MRI) has become more widely used in neonatal hypoxic-ischemic encephalopathy (HIE), involving, for example, evaluation of cerebral edema, white matter fiber bundle tracking, cerebral perfusion status, and assessment of brain metabolites. MRI has many imaging modalities. However, its application for assessing changes in the internal environment at the tissue and cellular level after hypoxia–ischemia remains a challenge and is currently the focus of intense research. Based on the exchange between amide protons of proteins and polypeptides and free water protons, amide proton transfer (APT) imaging can display changes in pH and protein concentrations in vivo. This paper is a review of the principles of APT imaging, with a focus on the potential application of APT imaging for neonatal HIE.  相似文献   

3.

Background

A limitation with current imaging strategies of recurrent glioma undergoing radiotherapy is that tumor and radiation injury cannot be differentiated with post contrast CT or MRI, or with PET or other more complex parametric analyses of MRI data. We propose to address the imaging limitation building on emerging evidence indicating that effective therapy for recurrent glioma can be attained by sensitized T-cells following vaccination of primed dendritic cells (DCs). The purpose of this study was to determine whether cord blood T-cells can be sensitized against glioma cells (U-251) and if these sensitized cytotoxic T-cells (CTLs) can be used as cellular magnetic resonance imaging probes to identify and differentiate glioma from radiation necrosis in rodent models.

Methodology/Principal Findings

Cord blood T and CD14+ cells were collected. Isolated CD14+ cells were then converted to dendritic cells (DCs), primed with glioma cell lysate and used to sensitize T-cells. Phenotypical expression of the generated DCs were analyzed to determine the expression level of CD14, CD86, CD83 and HLA-DR. Cells positive for CD25, CD4, CD8 were determined in generated CTLs. Specificity of cytotoxicity of the generated CTLs was also determined by lactate dehydrogenase (LDH) release assay. Secondary proliferation capacity of magnetically labeled and unlabeled CTLs was also determined. Generated CTLs were magnetically labeled and intravenously injected into glioma bearing animals that underwent MRI on days 3 and 7 post- injection. CTLs were also administered to animals with focal radiation injury to determine whether these CTLs accumulated non-specifically to the injury sites. Multi-echo T2- and T2*-weighted images were acquired and R2 and R2* maps created. Our method produced functional, sensitized CTLs that specifically induced U251 cell death in vitro. Both labeled and unlabeled CTLs proliferated equally after the secondary stimulation. There were significantly higher CD25 positive cells (p = <0.006) in CTLs. In addition, T2- and T2*-weighted MR images showed increased low signal intensity areas in animals that received labeled CTLs as compared to the images from animals that received control cells. Histological analysis confirmed the presence of iron positive cells in sites corresponding to MRI low signal intensity regions. Significant differences (p = <0.001) in tumor R2 and R2* values were observed among the groups of animals. Animals with radiation injury exhibited neither MRI hypointense areas nor presence of iron positive cells.

Conclusion

Our results indicate that T-cells can be effectively sensitized by in vitro methods and used as cellular probes to identify and differentiate glioma from radiation necrosis.  相似文献   

4.
For the treatment of squamous cell cancer of the head and neck (SCCHN), the assessment of treatment response is traditionally accomplished by volumetric measurements and has been suggested to be prognostic for an eventual response to treatment. An early evaluation response during the course of radiation therapy could provide an opportunity to tailor treatment to individual patients. Diffusion magnetic resonance imaging (MRI) allows for the quantification of tissue water diffusion values, thus treatment-induced loss of tumor cells will result in the increase in water mobility at the microscopic level, which can be detected as an increase in tumor diffusion values before any volumetric changes occur. We evaluated the use of diffusion MRI as an imaging biomarker of treatment response in an orthotopic mouse model of SCCHN. Mice with murine squamous cells expressing the yeast transgene cytosine deaminase were treated with 5-fluorocytosine (5FC), ionizing radiation, and combined therapy and were compared with control animals both during and after treatment for changes in tumor volumes, diffusion values, and survival. Radiation therapy had minimal effect on volumetric growth rate, diffusion, or survival. Although 5FC and combination treatment resulted in similar reductions in tumor volumes, the combination treatment elicited a much greater increase in tumor diffusion values, which correlated with improved survival. Thus, diffusion MRI as an imaging biomarker has a potential for early evaluation of the response to chemoradiation treatment in SCCHN.  相似文献   

5.
Amide proton transfer (APT) imaging is one of the chemical exchange saturation transfer (CEST) imaging methods which images the exchange between protons of free tissue water and the amide groups (−NH) of endogenous mobile proteins and peptides. Previous work suggested the ability of APT imaging for characterization of the tumoral grade in the brain tumor. In this study, we tested the feasibility of in-vivo APT imaging of lung tumor and investigated whether the method could differentiate the tumoral types on orthotopic tumor xenografts from two malignant lung cancer cell lines. The results revealed that APT imaging is feasible to quantify lung tumors in the moving lung. The measured APT effect was higher in the tumor which exhibited more active proliferation than the other. The present study demonstrates that APT imaging has the potential to provide a characterization test to differentiate types or grade of lung cancer noninvasively, which may eventually reduce the need invasive needle biopsy or resection for lung cancer.  相似文献   

6.
为了研究自杀基因——胞嘧啶脱氨酶基因(cytosine deaminase gene,CD基因)对大鼠脑胶质瘤的体内治疗效果,采用基因转导系统将慢病毒包装的CD基因转染骨髓间充质干细胞(MSC)并使其长时间、高效表达,然后移植到使用颅内立体定向接种法制作的40只SD大鼠胶质瘤模型中.按接种细胞类型将实验SD大鼠分为5组, 每组8只:① C6胶质瘤; ②C6+MSCs细胞(1∶1);③ C6+MSCs细胞(1∶2);④ C6+MSC-codA/eGFP细胞(1∶1);⑤ C6+MSC-codA/eGFP细胞(1∶2).瘤龄7天后腹腔注射500 mg/(kg·d) 5-氟胞嘧啶(5-flucytosine,5-FC),共14天.用磁共振成像(MRI)动态监测肿瘤的体积并进行了大鼠存活期观察、常规病理分析、RT-PCR检测、HE 染色.结果显示,第①组瘤龄14天时病灶呈圆形,中心见坏死区,肿瘤平均246 mm3,均存活期15.3天,第②组平均生存期16.0天,第③组平均生存期16.6天,第④⑤组自然存活期均大于30天,14天时病灶平均体积分别为55 mm3、40 mm3,28天时肿瘤抑制率分别为77.24%、83.28%.MRI扫描可清楚显示肿瘤的大小、形态和内部结构,与病理结果高度相关;MRI动态观察可证实携带CD基因的骨髓间充质干细胞及5-FC治疗系统治疗C6颅内胶质瘤有效;RT-PCR检测结果证实肿瘤组织内有胞嘧啶脱氨酶表达.  相似文献   

7.
Gliomas, the most common primary brain tumors in adults, have a poor outcome. PBN (α-phenyl-tert-butylnitrone) and OKN007 (2,4-disulfophenyl-PBN) are nitrones that have demonstrated beneficial effects in many aging diseases. In this study, we evaluated the anti-tumor effects of PBN and OKN007 in several rodent glioma models (C6, RG2, and GL261) by assessing metabolite alterations with magnetic resonance spectroscopy (MRS). PBN or OKN007 was administered in drinking water before or after tumor formation. MR imaging and single-voxel point-resolved spectroscopy were done to assess tumor morphology and metabolites, after therapy. Major metabolite ratios (choline, N-acetylaspartate, and lipid (methylene or methyl), all compared to creatine), as well as quantification of individual metabolite concentrations, were assessed. Nitrones induced tumor metabolism changes that resulted in restoring major metabolite ratios close to their normal levels, in the glioma regression phase. Nitrone treatment decreased the lipid (methylene)-to-creatine ratio, as well as the estimated concentration of lipid (methylene) significantly. Alterations in lipids can be a useful marker for the evaluation of the efficacy associated with treatment and were found in this study to be related to the reduction of necrosis, but not apoptosis. OKN007 was more effective than PBN when administered after tumor formation in the C6 glioma model. In conclusion, 1H MRS and conventional MRI are useful methods to assess and follow the response of varied glioma models to anti-tumor treatments.  相似文献   

8.
The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf(-/-) Pten(loxP/loxP)/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/- ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials.  相似文献   

9.
This study evaluated whether nitric oxide (NO) derived from nitric oxide synthase (NOS) induced by radiation is associated with tumorigenesis in the mammary glands. When rats were exposed to whole-body irradiation with gamma-rays (1.5 Gy) immediately after weaning and then treated with diethylstilbestrol, as an irradiated control, the tumor incidence (85%) was increased 7.6-fold in comparison with that (11.1%) of the non-irradiated control. The tumor incidence declined to 28.6% in the rats injected intraperitoneally with phenyl-N-tert-butylnitrone (PBN, 160 mg/kg), an inhibitor of inducible NOS (iNOS) expression and also a spin trapping agent, 30 min before irradiation. Also, the tumor incidence (25%) in rats orally administered with N-(3-(aminomethyl)-benzyl)-acetamide (1400W, 2.3+/-0.1 mg/day), a highly selective inhibitor of iNOS, dissolved in drinking water for 3 days after the irradiation was less than one-third of that in the irradiated control. On treatment with PBN or 1400W, no adenocarcinoma developed. Many of the mammary tumors that developed in the irradiated rats were positive for the estrogen receptor (ER). In contrast, ER was not detected in the tumors yielded from irradiated rats administered with PBN or 1400W. These results indicate that iNOS-derived NO may participate in the formation of estrogen-dependent mammary adenocarcinomas following radiation.  相似文献   

10.
In the past decade, it has become possible to use the nuclear (proton, 1H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ, using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.  相似文献   

11.
Preclinical studies of cranial radiation therapy (RT) using animal brain tumor models have been hampered by technical limitations in the delivery of clinically relevant RT. We established a bioimageable mouse model of glioblastoma multiforme (GBM) and an image-guided radiation delivery system that facilitated precise tumor localization and treatment and which closely resembled clinical RT. Our novel radiation system makes use of magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) to define tumor volumes, computed tomographic (CT) imaging for accurate treatment planning, a novel mouse immobilization system, and precise treatments delivered with the Small Animal Radiation Research Platform. We demonstrated that, in vivo, BLI correlated well with MRI for defining tumor volumes. Our novel restraint system enhanced setup reproducibility and precision, was atraumatic, and minimized artifacts on CT imaging used for treatment planning. We confirmed precise radiation delivery through immunofluorescent analysis of the phosphorylation of histone H2AX in irradiated brains and brain tumors. Assays with an intravenous near-infrared fluorescent probe confirmed that radiation of orthografts increased disruption of the tumor blood-brain barrier (BBB). This integrated model system, which facilitated delivery of precise, reproducible, stereotactic cranial RT in mice and confirmed RT's resultant histologic and BBB changes, may aid future brain tumor research.  相似文献   

12.
目的比较利用SD大鼠、Wistar大鼠建立脑胶质瘤动物模型的不同,为研究脑胶质瘤的发病机制及治疗方法提供操作平台。方法利用立体定向仪建立SD大鼠、Wistar大鼠大脑皮层接种C6细胞(2.5×105个细胞/只),建立脑胶质瘤动物模型,利用组织病理学、免疫组织化学以及核磁共振成像等技术,比较两种动物模型在成瘤率、肿瘤生长状况、死亡率以及动物一般情况等方面的异同。结果SD大鼠组、Wistar大鼠组的成瘤率均为100%,两组均未见转移;但SD大鼠组肿瘤成瘤时间较长,且部分肿瘤有自愈倾向,而Wistar大鼠组则未出现类似情况。结论Wistar大鼠大脑皮层脑胶质瘤动物模型的肿瘤性状更接近于人的脑胶质瘤,因此更适合探索和研究脑胶质瘤的发病机制和治疗方法;而SD大鼠的肿瘤由于性状类似转移瘤,且有自愈倾向,不适合作为上述相关研究的动物模型。  相似文献   

13.
BackgroundMRI-guided radiation therapy can image a target and irradiate it at the same time. Superparamagnetic iron oxide (SPIO) is a liver-specific contrast agent that can selectively visualize liver tumors, even if plain MRI does not depict them. The purpose of this study was to present a proof of concept of SPIO-enhanced MRI-guided radiation therapy for liver tumor.Case presentationMRI-guided stereotactic ablative radiation therapy (SABR) was planned for a patient with impaired renal function who developed liver metastases after nephroureterectomy for ureteral cancer. Because liver metastasis was not visualized on plain MRI, SPIO-enhanced MRI was performed at 0.35 T using true fast imaging with steady-state free precession (true FISP) pulse sequence and SABR was performed. Liver metastasis was clearly visualized by SPIO-enhanced MRI, and MRI-guided SABR was performed without adverse events.ConclusionEven if liver metastasis is not visualized by plain MRI, liver metastasis can be clearly depicted by administering SPIO, and MRI-guided radiation therapy can be performed.  相似文献   

14.
Recent publications show that some patients receive high cumulative radiation doses from recurrent CT examinations. Most of these patients had a diagnosis of malignancy, meaning that there was a likelihood that they would receive radiation therapy, possibly with image guidance. Patients receiving X-ray-based image-guided radiation therapy (IGRT) receive even more imaging dose, including to volumes of tissue outside the tumor target volume. The benefits of IGRT must be considered in light of the additional dose received. Monitoring and recording of the imaging dose should be considered, as should techniques to reduce both the dose and volume irradiated.  相似文献   

15.
Huang KM  Peng M  Feng YQ  Huang H  Tu HJ  Luo J  Zhang L  Yuan XH  Wang LC 《Cryobiology》2012,64(1):43-49
Glioma, a type of brain tumor originating from glioma cells, varies widely in aggressiveness and causes serious symptoms, but the treatments are limited. Studies have shown that cryosurgery has multiple effects on tumor treatments, and administration of human tumor necrosis factor-alpha (rhTNF-α) arguments the anti-tumor effect of cryotherapy in breast and prostate cancers. To test the hypothesis that cryosurgery and rhTNF-α play synergistic effects against brain tumors, we established a brain glioma model on rat cortex regions following different treatments: the G1 group was sham-operated; the G2 group was treated with cryosurgery; the G3 group was treated with rhTNF-α; and G4 group received combined treatment with cryosurgery and rhTNF-α. Tumor sizes were measured by magnetic resonance imaging; DNA fragmentation was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay); P21(WAF1/CIP1) and proliferating cell nuclear antigen (PCNA) expression levels were scored using immunohistochemical staining. G2 and G4 rats had significantly longer survival time than did G1 rats. Tumor sizes in each group were significantly decreased as compared with those in G1 rats. PCNA-positive cells were significantly decreased in G2, G3 and G4 rats as compared with G1 rats. In contrast, DNA fragmentation and P21(WAF1/CIP1)-positive cells were significantly increased in each treatment group. Importantly, a combined treatment enhanced the effects of cryosurgery. Combined treatment with cryosurgery and rhTNF-α may have a synergistic effect on glioma tumor therapy, enhancing the inhibition of proliferation and the induction of apoptosis.  相似文献   

16.
Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL) and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL) delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI). Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.  相似文献   

17.
Background aimsChimeric antigen receptor (CAR) T-cell therapy is a promising treatment strategy in solid tumors. In vivo cell tracking techniques can help us better understand the infiltration, persistence and therapeutic efficacy of CAR T cells. In this field, magnetic resonance imaging (MRI) can achieve high-resolution images of cells by using cellular imaging probes. MRI can also provide various biological information on solid tumors.MethodsThe authors adopted the amino alcohol derivatives of glucose-coated nanoparticles, ultra-small superparamagnetic particles of iron oxide (USPIOs), to label CAR T cells for non-invasive monitoring of kinetic infiltration and persistence in glioblastoma (GBM). The specific targeting CARs included anti-human epidermal growth factor receptor variant III and IL13 receptor subunit alpha 2 CARs.ResultsWhen using an appropriate concentration, USPIO labeling exerted no negative effects on the biological characteristics and killing efficiency of CAR T cells. Increasing hypointensity signals could be detected in GBM models by susceptibility-weighted imaging MRI ranging from 3 days to 14 days following the injection of USPIO-labeled CAR T cells. In addition, nanoparticles and CAR T cells were found on consecutive histopathological sections. Moreover, diffusion and perfusion MRI revealed significantly increased water diffusion and decreased vascular permeability on day 3 after treatment, which was simultaneously accompanied by a significant decrease in tumor cell proliferation and increase in intercellular tight junction on immunostaining sections.ConclusionThese results establish an effective imaging technique that can track CAR T cells in GBM models and validate their early therapeutic effects, which may guide the evaluation of CAR T-cell therapies in solid tumors.  相似文献   

18.
The diagnosis of glioma is mainly based on imaging methods that do not distinguish between stage and subtype prior to histopathological analysis. Patients with gliomas are generally diagnosed in the symptomatic stage of the disease. Additionally, healing scar tissue may be mistakenly identified based on magnetic resonance imaging (MRI) as a false positive tumor recurrence in postoperative patients. Current knowledge of molecular alterations underlying gliomagenesis and identification of tumoral biomarkers allow for their use as discriminators of the state of the organism. Moreover, a multiomics approach provides the greatest spectrum and the ability to track physiological changes and can serve as a minimally invasive method for diagnosing asymptomatic gliomas, preceding surgery and allowing for the initiation of prophylactic treatment. It is important to create a vast biomarker library for adults and pediatric patients due to their metabolic differences. This review focuses on the most promising proteomic, metabolomic and lipidomic glioma biomarkers, their pathways, the interactions, and correlations that can be considered characteristic of tumor grade or specific subtype.  相似文献   

19.
The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.  相似文献   

20.
The prognosis of malignant brain tumors remains extremely bad in spite of moderate improvements of conventional treatments. A promising alternative approach is the use of oncolytic viruses. Strategies to improve viral toxicity include the combination of oncolytic viruses with standard therapies. Parvovirus H-1 (H-1PV) is an oncolytic virus with proven toxicity in glioma cells. Recently it has been demonstrated that the combination of ionizing radiation (IR) with H-1PV showed promising results. Previously irradiated glioma cells remained fully permissive for H-1PV induced cytotoxicity supporting the use of H-1PV for recurrent gliomas, which typically arise from irradiated cell clones. When glioma cells were infected with H-1PV shortly (24 h) after IR, cell killing improved and only the combination of both treatments lead to complete long-term tumor cell killing. The latter finding raises the question whether IR in combination with H-1PV exerts an additional therapeutic effect on highly resistant glioma stem cells. A likely translation into current clinical treatment protocols is to use stereotactic radiation of non-resectable recurrent gliomas followed by intratumoral injection of H-1PV to harvest the synergistic effects of combination treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号