首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
There is solid evidence that complex traits can be caused by rare variants. Next-generation sequencing technologies are powerful tools for mapping rare variants. Confirmation of significant findings in stage 1 through replication in an independent stage 2 sample is necessary for association studies. For gene-based mapping of rare variants, two replication strategies are possible: (1) variant-based replication, wherein only variants from nucleotide sites uncovered in stage 1 are genotyped and followed-up and (2) sequence-based replication, wherein the gene region is sequenced in the replication sample and both known and novel variants are tested. The efficiency of the two strategies is dependent on the proportions of causative variants discovered in stage 1 and sequencing/genotyping errors. With rigorous population genetic and phenotypic models, it is demonstrated that sequence-based replication is consistently more powerful. However, the power gain is small (1) for large-scale studies with thousands of individuals, because a large fraction of causative variant sites can be observed and (2) for small- to medium-scale studies with a few hundred samples, because a large proportion of the locus population attributable risk can be explained by the uncovered variants. Therefore, genotyping can be a temporal solution for replicating genetic studies if stage 1 and 2 samples are drawn from the same population. However, sequence-based replication is advantageous if the stage 1 sample is small or novel variants discovery is also of interest. It is shown that currently attainable levels of sequencing error only minimally affect the comparison, and the advantage of sequence-based replication remains.  相似文献   

2.
Through linkage analysis, candidate gene approach, and genome-wide association studies (GWAS), many genetic susceptibility factors for substance dependence have been discovered such as the alcohol dehydrogenase gene (ALDH2) for alcohol dependence (AD) and nicotinic acetylcholine receptor (nAChR) subunit variants on chromosomes 8 and 15 for nicotine dependence (ND). However, these confirmed genetic factors contribute only a small portion of the heritability responsible for each addiction. Among many potential factors, rare variants in those identified and unidentified susceptibility genes are supposed to contribute greatly to the missing heritability. Several studies focusing on rare variants have been conducted by taking advantage of next-generation sequencing technologies, which revealed that some rare variants of nAChR subunits are associated with ND in both genetic and functional studies. However, these studies investigated variants for only a small number of genes and need to be expanded to broad regions/genes in a larger population. This review presents an update on recently developed methods for rare-variant identification and association analysis and on studies focused on rare-variant discovery and function related to addictions.  相似文献   

3.
Molecular basis of human hypertension: role of angiotensinogen.   总被引:161,自引:0,他引:161  
Essential hypertension is a common human disease believed to result from the interplay of multiple genetic and environmental determinants. In genetic studies of two large panels of hypertensive sibships from widely separated geographical areas, we obtained evidence of genetic linkage between the angiotensinogen gene (AGT) and hypertension, demonstrated association of AGT molecular variants with the disease, and found significant differences in plasma concentrations of angiotensinogen among hypertensive subjects with different AGT genotypes. The corroboration and replication afforded by these results support the interpretation that molecular variants of AGT constitute inherited predispositions to essential hypertension in humans.  相似文献   

4.
Objective: A previous epidemiological study showed an association of the insulin‐induced gene 2 (INSIG2) gene with BMI. Additionally, experimental investigations in animals and cell culture provided evidence that this gene might be involved in lipoprotein and free fatty acid (FFA) metabolism. Therefore, the aim of this study was to examine the association between the rs7566605 variant near the INSIG2 gene and BMI and to extend it to other quantitative measures of obesity, as well as parameters of lipoprotein and FFA metabolism. Methods and Procedures: We genotyped rs7566605 in a group of severely obese white patients (n = 1,026) with an average BMI of 46.0 kg/m2 and a control group (n = 818) from Utah, as well as in the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR) study from Austria, which is based on a healthy working population (n = 1,696). Results: We observed no difference in the genotype frequency of rs7566605 of INSIG2 between obese subjects and population‐based controls from Utah. Furthermore, we did not find evidence of an association with measures of body composition (BMI, waist, waist‐to‐hip ratio, percentage body fat, amount of visceral and subcutaneous abdominal adipose fat) or lipoprotein metabolism (total cholesterol, low‐density lipoprotein (LDL) and high‐density lipoprotein (HDL) cholesterol, triglycerides, and FFAs) in the Utah study population or in the independent SAPHIR study. Discussion: Our results do not support an association of the INSIG2 gene with the regulation of body weight or parameters related to lipoprotein metabolism.  相似文献   

5.
The APOE locus and the pharmacogenetics of lipid response   总被引:3,自引:0,他引:3  
Genetic variation at the APOE locus has been associated with plasma lipoprotein concentrations in the fasting (low-density, and high-density lipoproteins and triglycerides), and in the postprandial (triglyceride-rich lipoproteins) states. Resulting from these associations, the APOE locus has been found to be a significant genetic determinant of cardiovascular disease in the general population. Beyond the traditional association studies, APOE genetic variation has been shown to play a significant role, which explains some of the individual variations in therapies aimed at normalizing plasma lipid concentrations. Thus, the APOE E4 allele has been shown in some studies to be associated with increased response to dietary intervention. Conversely, APOE E2 carriers appear to be more responsive to statin therapy. The mechanisms behind these observations, however, have not been elucidated. Moreover, several other gene:environment and gene:therapy interactions have recently been demonstrated, thus further increasing the interest in this remarkable apolipoprotein.  相似文献   

6.
In contrast to monogenic diseases, a straightforward genotype–phenotype relationship is unlikely for multifactorial diseases because of a number of genetic and nongenetic factors, including genetic heterogeneity, gene–gene and gene–environment interactions, and epigenetic mechanisms. As a consequence, the relative risk of particular genetic variants will generally be small, which implies that large sample sizes are required for their initial identification. No conclusions as to the frequency and diversity of the causative genetic variation can generally be drawn from the prevalence of a disease alone. Homogenization of the genetic background of the study population and the use of simple and clearly defined phenotypes together with “educated guesses” in candidate gene and gene–environment studies appear to be the most promising way to identify the genetic factors underlying multifactorial diseases. Replication of initial disease association findings, particularly for rare variants, should be carried out in populations that are genetically as similar as possible to the original population.  相似文献   

7.
The important role of APOAV gene variants in determination of plasma triglyceride levels has been shown in many population studies. Recently, an influence of APOAV T-1131>C polymorphism on C-reactive protein (CRP) in young Korean males has been reported. We have therefore analyzed a putative association between T-1131>C, Ser19>Trp and Val153>Met APOAV variants (PCR and restriction analysis) and CRP concentrations in 1119 Caucasian males, aged between 28 and 67 years (49.2+/-10.8 years). The frequency of C allele carriers was lower in Caucasians than in Koreans (15.5% vs. 46.2%). CRP levels did not differ between T/T homozygotes (n=946, 1.61+/-2.05 mg/l) and carriers of the C allele (n=173, 1.67+/-1.95 mg/l). Thus, in contrast to Korean males, T-1131>C APOAV variant has no effect on plasma concentrations of CRP in a large group of Caucasian males. Other APOAV variants (Ser19>Trp and Val153>Met) did not also influence plasma concentrations of CRP. APOAV variants are unlikely to be an important genetic determinant of plasma CRP concentrations in Caucasian males.  相似文献   

8.
Individuals with mixed dyslipidemia, including high triglycerides (TGs) and low high density lipoprotein cholesterol (HDL-C), have increased risk for coronary events. We examined the effect of rare genetic variants in the APOA5 gene region on plasma HDL-C, apolipoprotein A-I (apoA-I), and TG response to fenofibric acid monotherapy and in combination with statins. The APOA5 gene region was sequenced in 1,612 individuals with mixed dyslipidemia in a randomized trial of fenofibric acid alone and in combination with statins. Student''s t-test and rare variant burden tests were used to examine plasma HDL-C, apoA-I, and TG response. Rare APOA5 promoter region variants were associated with decreased HDL-C and apoA-I levels in response to fenofibric acid therapy; rare missense variants were associated with increased TG response to combination therapy. Further study is needed to examine the effect of these rare variants on coronary outcomes in this population in response to fenofibric acid monotherapy or combined with statins  相似文献   

9.
Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.  相似文献   

10.
There is great interest in detecting associations between human traits and rare genetic variation. To address the low power implicit in single-locus tests of rare genetic variants, many rare-variant association approaches attempt to accumulate information across a gene, often by taking linear combinations of single-locus contributions to a statistic. Using the right linear combination is key—an optimal test will up-weight true causal variants, down-weight neutral variants, and correctly assign the direction of effect for causal variants. Here, we propose a procedure that exploits data from population controls to estimate the linear combination to be used in an case-parent trio rare-variant association test. Specifically, we estimate the linear combination by comparing population control allele frequencies with allele frequencies in the parents of affected offspring. These estimates are then used to construct a rare-variant transmission disequilibrium test (rvTDT) in the case-parent data. Because the rvTDT is conditional on the parents’ data, using parental data in estimating the linear combination does not affect the validity or asymptotic distribution of the rvTDT. By using simulation, we show that our new population-control-based rvTDT can dramatically improve power over rvTDTs that do not use population control information across a wide variety of genetic architectures. It also remains valid under population stratification. We apply the approach to a cohort of epileptic encephalopathy (EE) trios and find that dominant (or additive) inherited rare variants are unlikely to play a substantial role within EE genes previously identified through de novo mutation studies.  相似文献   

11.
Genetic determinants of folate status in Central Bohemia   总被引:1,自引:0,他引:1  
Although several genetic factors have been implicated as determinants of blood folate concentration in various populations, their effect on folate status in the Czech population has not yet been examined. We explored whether blood folate concentrations in healthy Czech population are associated with polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR), folate hydrolase 1 (FOLH1), reduced folate carrier (RFC), and folate receptor (FOLR1) genes. In a cross-sectional study of 591 control subjects we determined genotypes by PCR-RFLP or ARMS-PCR methods, and plasma and erythrocyte folates by MEIA. The effect of different genotypes on folate status was examined by non-parametric tests and by regression analysis. The prevalence of the MTHFR 677C>T, MTHFR 1298A>C, FOLH1 1561C>T, RFC 80G>A and FOLR1 480G>C variant alleles was 0.34, 0.33, 0.05, 0.44 and 0.00, respectively. Only the MTHFR 677C>T variant was significantly associated with plasma folate concentrations (median 14.7, 14.0 and 12.2 nmol/l for the CC, CT and TT genotypes, respectively). Our study showed that among the five studied allelic variants, only the 677C>T polymorphism in the MTHFR gene is a significant genetic determinant of plasma folate concentrations in Czech population.  相似文献   

12.
Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders.  相似文献   

13.
Copy number variants (CNVs) contribute to human genetic and phenotypic diversity. However, the distribution of larger CNVs in the general population remains largely unexplored. We identify large variants in ~2500 individuals by using Illumina SNP data, with an emphasis on “hotspots” prone to recurrent mutations. We find variants larger than 500 kb in 5%–10% of individuals and variants greater than 1 Mb in 1%–2%. In contrast to previous studies, we find limited evidence for stratification of CNVs in geographically distinct human populations. Importantly, our sample size permits a robust distinction between truly rare and polymorphic but low-frequency copy number variation. We find that a significant fraction of individual CNVs larger than 100 kb are rare and that both gene density and size are strongly anticorrelated with allele frequency. Thus, although large CNVs commonly exist in normal individuals, which suggests that size alone can not be used as a predictor of pathogenicity, such variation is generally deleterious. Considering these observations, we combine our data with published CNVs from more than 12,000 individuals contrasting control and neurological disease collections. This analysis identifies known disease loci and highlights additional CNVs (e.g., 3q29, 16p12, and 15q25.2) for further investigation. This study provides one of the first analyses of large, rare (0.1%–1%) CNVs in the general population, with insights relevant to future analyses of genetic disease.  相似文献   

14.
Although they have demonstrated success in searching for common variants for complex diseases, genome-wide association (GWA) studies are less successful in detecting rare genetic variants because of the poor statistical power of most of current methods. We developed a two-stage method that can apply to GWA studies for detecting rare variants. Here we report the results of applying this two-stage method to the Wellcome Trust Case Control Consortium (WTCCC) dataset that include seven complex diseases: bipolar disorder, cardiovascular disease, hypertension (HT), rheumatoid arthritis, Crohn’s disease, type 1 diabetes and type 2 diabetes (T2D). We identified 24 genes or regions that reach genome wide significance. Eight of them are novel and were not reported in the WTCCC study. The cumulative risk (or protective) haplotype frequency for each of the 8 genes or regions is small, being at most 11%. For each of the novel genes, the risk (or protective) haplotype set cannot be tagged by the common SNPs available in chips (r 2 < 0.32). The gene identified in HT was further replicated in the Framingham Heart Study, and is also significantly associated with T2D. Our analysis suggests that searching for rare genetic variants is feasible in current GWA studies and candidate gene studies, and the results can severe as guides to future resequencing studies to identify the underlying rare functional variants.  相似文献   

15.
Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis, the mobilization of stored triacylglycerol. This work provides an important basis for generating reproducible and detailed data on the hydrolytic and transacylation activities of ATGL. We generated full-length and C-terminally truncated ATGL variants fused with various affinity tags and analyzed their expression in different hosts, namely E.coli, the insect cell line Sf9, and the mammalian cell line human embryonic kidney 293T. Based on this screen, we expressed a fusion protein of ATGL covering residues M1-D288 flanked with N-terminal and C-terminal purification tags. Using these fusions, we identified key steps in expression and purification protocols, including production in the E. coli strain ArcticExpress (DE3) and removal of copurified chaperones. The resulting purified ATGL variant demonstrated improved lipolytic activity compared with previously published data, and it could be stimulated by the coactivator protein comparative gene identification-58 and inhibited by the protein G0/G1 switch protein 2. Shock freezing and storage did not affect the basal activity but reduced coactivation of ATGL by comparative gene identification 58. In vitro, the truncated ATGL variant demonstrated acyl-CoA–independent transacylation activity when diacylglycerol was offered as substrate, resulting in the formation of fatty acid as well as triacylglycerol and monoacylglycerol. However, the ATGL variant showed neither hydrolytic activity nor transacylation activity upon offering of monoacylglycerol as substrate. To understand the role of ATGL in different physiological contexts, it is critical for future studies to identify all its different functions and to determine under what conditions these activities occur.  相似文献   

16.
The rapid decrease in sequencing cost has enabled genetic studies to discover rare variants associated with complex diseases and traits. Once this association is identified, the next step is to understand the genetic mechanism of rare variants on how the variants influence diseases. Similar to the hypothesis of common variants, rare variants may affect diseases by regulating gene expression, and recently, several studies have identified the effects of rare variants on gene expression using heritability and expression outlier analyses. However, identifying individual genes whose expression is regulated by rare variants has been challenging due to the relatively small sample size of expression quantitative trait loci studies and statistical approaches not optimized to detect the effects of rare variants. In this study, we analyze whole-genome sequencing and RNA-seq data of 681 European individuals collected for the Genotype-Tissue Expression (GTEx) project (v8) to identify individual genes in 49 human tissues whose expression is regulated by rare variants. To improve statistical power, we develop an approach based on a likelihood ratio test that combines effects of multiple rare variants in a nonlinear manner and has higher power than previous approaches. Using GTEx data, we identify many genes regulated by rare variants, and some of them are only regulated by rare variants and not by common variants. We also find that genes regulated by rare variants are enriched for expression outliers and disease-causing genes. These results suggest the regulatory effects of rare variants, which would be important in interpreting associations of rare variants with complex traits.  相似文献   

17.
There is growing evidence of the capacity of vitamin A to regulate the expression of the genetic region that encodes apolipoproteins (apo) A-I, C-III, and A-IV. This region in turn has been proposed to modulate the expression of hyperlipidemia in the commonest genetic form of dyslipidemia, familial combined hyperlipidemia (FCHL). The hypothesis tested here was whether vitamin A (retinol), by controlling the expression of the AI-CIII-AIV gene cluster, plays a role in modulating the hyperlipidemic phenotype in FCHL. We approached the subject by studying three genetic variants of this region: a C1100-T transition in exon 3 of the apoC-III gene, a G3206-T transversion in exon 4 of the apoC-III gene, and a G-75-A substitution in the promoter region of the apoA-I gene. The association between plasma vitamin A concentrations and differences in the plasma concentrations of apolipoproteins A-I and C-III based on the different genotypes was assessed in 48 FCHL patients and 74 of their normolipidemic relatives. The results indicated that the subjects carrying genetic variants associated with increased concentrations of apoA-I and C-III (C1100-T and G-75-A) also presented increased plasma concentrations of vitamin A. This was only observed among the FCHL patients, which suggested that certain characteristics of these patients contributed to this association. The G3206-T was not associated with changes in either apolipoprotein concentrations or in vitamin A.In summary, we report a relationship between genetically determined elevations of proteins of the AI-CIII-AIV gene cluster and vitamin A in FCHL patients. More studies will be needed to confirm that vitamin A plays a role in FCHL which might also be important for its potential application to therapeutical approaches.  相似文献   

18.
The genetic underpinnings of both normal and pathological variation in plasma triglyceride (TG) concentration are relatively well understood compared to many other complex metabolic traits. For instance, genome-wide association studies (GWAS) have revealed 32 common variants that are associated with plasma TG concentrations in healthy epidemiologic populations. Furthermore, GWAS in clinically ascertained hypertriglyceridemia (HTG) patients have shown that almost all of the same TG-raising alleles from epidemiologic samples are also associated with HTG disease status, and that greater accumulation of these alleles reflects the severity of the HTG phenotype. Finally, comprehensive resequencing studies show a burden of rare variants in some of these same genes - namely in LPL, GCKR, APOB and APOA5 - in HTG patients compared to normolipidemic controls. A more complete understanding of the genes and genetic variants associated with plasma TG concentration will enrich our understanding of the molecular pathways that modulate plasma TG metabolism, which may translate into clinical benefit. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

19.

Background

Both common and rare genetic variants have been shown to contribute to the etiology of complex diseases. Recent genome-wide association studies (GWAS) have successfully investigated how common variants contribute to the genetic factors associated with common human diseases. However, understanding the impact of rare variants, which are abundant in the human population (one in every 17 bases), remains challenging. A number of statistical tests have been developed to analyze collapsed rare variants identified by association tests. Here, we propose a haplotype-based approach. This work inspired by an existing statistical framework of the pedigree disequilibrium test (PDT), which uses genetic data to assess the effects of variants in general pedigrees. We aim to compare the performance between the haplotype-based approach and the rare variant-based approach for detecting rare causal variants in pedigrees.

Results

Extensive simulations in the sequencing setting were carried out to evaluate and compare the haplotype-based approach with the rare variant methods that drew on a more conventional collapsing strategy. As assessed through a variety of scenarios, the haplotype-based pedigree tests had enhanced statistical power compared with the rare variants based pedigree tests when the disease of interest was mainly caused by rare haplotypes (with multiple rare alleles), and vice versa when disease was caused by rare variants acting independently. For most of other situations when disease was caused both by haplotypes with multiple rare alleles and by rare variants with similar effects, these two approaches provided similar power in testing for association.

Conclusions

The haplotype-based approach was designed to assess the role of rare and potentially causal haplotypes. The proposed rare variants-based pedigree tests were designed to assess the role of rare and potentially causal variants. This study clearly documented the situations under which either method performs better than the other. All tests have been implemented in a software, which was submitted to the Comprehensive R Archive Network (CRAN) for general use as a computer program named rvHPDT.  相似文献   

20.
Plasma triglyceride (TG) concentration is reemerging as an important cardiovascular disease risk factor. More complete understanding of the genes and variants that modulate plasma TG should enable development of markers for risk prediction, diagnosis, prognosis, and response to therapies and might help specify new directions for therapeutic interventions. Recent genome-wide association studies (GWAS) have identified both known and novel loci associated with plasma TG concentration. However, genetic variation at these loci explains only ~10% of overall TG variation within the population. As the GWAS approach may be reaching its limit for discovering genetic determinants of TG, alternative genetic strategies, such as rare variant sequencing studies and evaluation of animal models, may provide complementary information to flesh out knowledge of clinically and biologically important pathways in TG metabolism. Herein, we review genes recently implicated in TG metabolism and describe how some of these genes likely modulate plasma TG concentration. We also discuss lessons regarding plasma TG metabolism learned from various genomic and genetic experimental approaches. Treatment of patients with moderate to severe hypertriglyceridemia with existing therapies is often challenging; thus, gene products and pathways found in recent genetic research studies provide hope for development of more effective clinical strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号