共查询到20条相似文献,搜索用时 15 毫秒
1.
The small GTPase Rab1b is essential for endoplasmic reticulum (ER) to Golgi transport, but its exact function remains unclear. We have examined the effects of wild-type and three mutant forms of Rab1b in vivo. We show that the inactive form of Rab1b (the N121I mutant with impaired guanine nucleotide binding) blocks forward transport of cargo and induces Golgi disruption. The phenotype is analogous to that induced by brefeldin A (BFA): it causes resident Golgi proteins to relocate to the ER and induces redistribution of ER-Golgi intermediate compartment proteins to punctate structures. The COPII exit machinery seems to be functional in cells expressing the N121I mutant, but COPI is compromised, as shown by the release of beta-COP into the cytosol. Our results suggest that Rab1b function influences COPI recruitment. In support of this, we show that the disruptive effects of N121I can be reversed by expressing known mediators of COPI recruitment, the GTPase ARF1 and its guanine nucleotide exchange factor GBF1. Further evidence is provided by the finding that cells expressing the active form of Rab1b (the Q67L mutant with impaired GTPase activity) are resistant to BFA. Our data suggest a novel role for Rab1b in ARF1- and GBF1-mediated COPI recruitment pathway. 相似文献
2.
Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumonia 总被引:3,自引:0,他引:3
Jones MR Simms BT Lupa MM Kogan MS Mizgerd JP 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(11):7530-7535
Pulmonary inflammation is an essential component of the host defense against Streptococcus pneumoniae infection of the lungs. The early response cytokines, TNF-alpha and IL-1, are rapidly induced upon microbial exposure. Mice deficient in all TNF- and IL-1-dependent signaling receptors were used to determine the roles of these cytokines during pneumococcal pneumonia. The deficiency of signaling receptors for TNF and IL-1 decreased bacterial clearance. Neutrophil recruitment to alveolar air spaces was impaired by receptor deficiency, as was pulmonary expression of the neutrophil chemokines KC and MIP-2. Because NF-kappaB mediates the expression of both chemokines, we assessed NF-kappaB activation in the lungs. During pneumococcal pneumonia, NF-kappaB proteins translocate to the nucleus and activate gene expression; these functions were largely abrogated by the deficiency of receptors for TNF-alpha and IL-1. Thus, the combined deficiency of TNF and IL-1 signaling reduces innate immune responses to S. pneumoniae in the lungs, probably due to essential roles for these receptors in activating NF-kappaB. 相似文献
3.
IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture 总被引:2,自引:0,他引:2
Moreno SE Alves-Filho JC Alfaya TM da Silva JS Ferreira SH Liew FY 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(5):3218-3224
Sepsis is a systemic inflammatory response resulting from local infection due, at least in part, to impaired neutrophil migration. IL-12 and IL-18 play an important role in neutrophil migration. We have investigated the mechanism and relative role of IL-12 and IL-18 in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. Wild-type (WT) and IL-18(-/-) mice were resistant to sublethal CLP (SL-CLP) sepsis. In contrast, IL-12(-/-) mice were susceptible to SL-CLP sepsis with high bacteria load in peritoneal cavity and systemic inflammation (serum TNF-alpha and lung neutrophil infiltration). The magnitude of these events was similar to those observed in WT mice with lethal CLP sepsis. The inability of IL-12(-/-) mice to restrict the infection was not due to impairment of neutrophil migration, but correlated with decrease of phagocytosis, NO production, and microbicidal activities of their neutrophils, and with reduction of systemic IFN-gamma synthesis. Consistent with this observation, IFN-gamma(-/-) mice were as susceptible to SL-CLP as IL-12(-/-) mice. Moreover, addition of IFN-gamma to cultures of neutrophils from IL-12(-/-) mice restored their phagocytic, microbicidal activities and NO production. Mortality of IL-12(-/-) mice to SL-CLP was prevented by treatment with IFN-gamma. Thus we show that IL-12, but not IL-18, is critical to an efficient host defense in polymicrobial sepsis. IL-12 acts through induction of IFN-gamma and stimulation of phagocytic and microbicidal activities of neutrophils, rather than neutrophil migration per se. Our data therefore provide further insight into the defense mechanism against this critical area of infectious disease. 相似文献
4.
Nina N. McNair Chetna Bedi Dmitry M. Shayakhmetov Michael J. Arrowood Jan R. Mead 《Microbes and infection / Institut Pasteur》2018,20(6):369-375
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells in the intestinal tract and cause a flu-like diarrheal illness. Innate immunity is key to limiting the expansion of parasitic stages early in infection. One mechanism in which it does this is through the generation of early cytokines, such as IL-18. The processing and secretion of mature IL-18 (and IL-1β) is mediated by caspase-1 which is activated within an inflammasome following the engagement of inflammasome-initiating sensors. We examined how the absence of caspase-1 and caspase-11, the adapter protein Asc, and other inflammasome components affects susceptibility to cryptosporidial infection by these and other key cytokines in the gut. We found that Casp-11?/?Casp-1?/? knockout mice have increased susceptibility to Cryptosporidium parvum infection as demonstrated by the 35-fold higher oocyst production (at peak infection) compared to wild-type mice. Susceptibility correlated with a lack of IL-18 in caspase-1 and caspase1/11 knockout mice, whereas IL-18 is significantly elevated in wildtype mice. IL-1β was not generated in any significant amount following infection nor was any increased susceptibility observed in IL-1β knockout mice. We also show that the adapter protein Asc is important to susceptibility, and that the caspase-1 canonical inflammasome signaling pathway is the dominant pathway in C. parvum resistance. 相似文献
5.
Miller LS Pietras EM Uricchio LH Hirano K Rao S Lin H O'Connell RM Iwakura Y Cheung AL Cheng G Modlin RL 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(10):6933-6942
IL-1R activation is required for neutrophil recruitment in an effective innate immune response against Staphylococcus aureus infection. In this study, we investigated the mechanism of IL-1R activation in vivo in a model of S. aureus infection. In response to a S. aureus cutaneous challenge, mice deficient in IL-1beta, IL-1alpha/IL-1beta, but not IL-1alpha, developed larger lesions with higher bacterial counts and had decreased neutrophil recruitment compared with wild-type mice. Neutrophil recruitment and bacterial clearance required IL-1beta expression by bone marrow (BM)-derived cells and not by non-BM-derived resident cells. In addition, mice deficient in the inflammasome component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) had the same defects in neutrophil recruitment and host defense as IL-1beta-deficient mice, demonstrating an essential role for the inflammasome in mediating the production of active IL-1beta to promote neutrophil recruitment in host defense against S. aureus. This finding was further supported by the ability of recombinant active IL-1beta to control the infection and promote bacterial clearance in IL-1beta-deficient mice. These studies define a key host defense circuit where inflammasome-mediated IL-1beta production by BM-derived cells signals IL-1R on non-BM-derived resident cells to activate neutrophil recruitment in the innate immune response against S. aureus in vivo. 相似文献
6.
The role of resident cells during the lipopolysaccharide (LPS)-induced neutrophil recruitment into rat air pouches was investigated. In this model, LPS (Escherichia coli, O55: B5 strain; 2-2000 ng) induced a dose- and time-dependent neutrophil recruitment accompanied by the generation of a tumour necrosis factor-alpha (TNFalpha)-like activity. Dexamethasone (0.05-5 mug) and cycloheximide (6 ng), injected 2 h before LPS into the pouches, inhibited the neutrophil recruitment and the generation of the TNFalpha-like activity, while the H1-receptor antagonist mepyramine (1 and 4 mg/kg, i.p., 0.5 h before LPS) and the PAF-receptor antagonist WEB 2170 (0.05 and 1 mg/kg, i.p., 0.5 h before LPS) had no effect. Purified alveolar macrophages (AM) were used to replenish the pouches of cycloheximide-treated recipient rats. AM provided by PBS-treated animals led to the recovery of the LPS-induced neutrophil recruitment and of the TNFalpha-like formation contrasting with those from cycloheximide-treated animals (1 mg/kg, i.p.). When delivered in situ, liposome-encapsulated clodronate, a macrophage depletor, significantly impaired both the LPSinduced neutrophil recruitment and the TNFalpha-like activity. An anti-murine TNFalpha polyclonal antibody (0.5 h before LPS) was also effective. These results emphasize the pivotal role of macrophages for LPS-induced neutrophil recruitment via the formation of TNFalpha. 相似文献
7.
Janus kinase 3 (JAK3) is a non-receptor tyrosine kinase vital to the regulation of T-cells. We report that JAK3 is a mediator of interleukin-8 (IL-8) stimulation of a different class of hematopoietic relevant cells: human neutrophils. IL-8 induced a time- and concentration-dependent activation of JAK3 activity in neutrophils and differentiated HL-60 leukemic cells. JAK3 was more robustly activated by IL-8 than other kinases: p70S6K, mTOR, MAPK or PKC. JAK3 silencing severely inhibited IL-8-mediated chemotaxis. Thus, IL-8 stimulates chemotaxis through a mechanism mediated by JAK3. Further, JAK3 activity and chemotaxis were inhibited by the flavonoid apigenin (4′,5,7-trihydroxyflavone) at ∼5 nM IC50. These new findings lay the basis for understanding the molecular mechanism of cell migration as it relates to neutrophil-mediated chronic inflammatory processes. 相似文献
8.
9.
10.
NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP 总被引:7,自引:0,他引:7 下载免费PDF全文
Kreuz S Siegmund D Rumpf JJ Samel D Leverkus M Janssen O Häcker G Dittrich-Breiholz O Kracht M Scheurich P Wajant H 《The Journal of cell biology》2004,166(3):369-380
Fas (APO-1/CD95) is the prototypic death receptor, and the molecular mechanisms of Fas-induced apoptosis are comparably well understood. Here, we show that Fas activates NFkappaB via a pathway involving RIP, FADD, and caspase-8. Remarkably, the enzymatic activity of the latter was dispensable for Fas-induced NFkappaB signaling pointing to a scaffolding-related function of caspase-8 in nonapoptotic Fas signaling. NFkappaB was activated by overexpressed FLIPL and FLIPS in a cell type-specific manner. However, in the context of Fas signaling both isoforms blocked FasL-induced NFkappaB activation. Moreover, down-regulation of both endogenous FLIP isoforms or of endogenous FLIPL alone was sufficient to enhance FasL-induced expression of the NFkappaB target gene IL8. As NFkappaB signaling is inhibited during apoptosis, FasL-induced NFkappaB activation was most prominent in cells that were protected by Bcl2 expression or caspase inhibitors and expressed no or minute amounts of FLIP. Thus, protection against Fas-induced apoptosis in a FLIP-independent manner converted a proapoptotic Fas signal into an inflammatory NFkappaB-related response. 相似文献
11.
An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment 总被引:4,自引:0,他引:4
Liang SC Long AJ Bennett F Whitters MJ Karim R Collins M Goldman SJ Dunussi-Joannopoulos K Williams CM Wright JF Fouser LA 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(11):7791-7799
IL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4(+) T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer. In vitro, IL-17F/A was more potent than IL-17F/F and less potent than IL-17A/A in regulating CXCL1 expression. Neutralization of IL-17F/A with an IL-17A-specific Ab, and not with an IL-17F-specific Ab, reduced the majority of IL-17F/A-induced CXCL1 expression. To study these cytokines in vivo, we established a Th17 cell adoptive transfer model characterized by increased neutrophilia in the airways. An IL-17A-specific Ab completely prevented Th17 cell-induced neutrophilia and CXCL5 expression, whereas Abs specific for IL-17F or IL-22, a cytokine also produced by Th17 cells, had no effects. Direct administration of mouse IL-17A/A or IL-17F/A, and not IL-17F/F or IL-22, into the airways significantly increased neutrophil and chemokine expression. Taken together, our data elucidate the regulation of IL-17F/A heterodimer expression by Th17 cells and demonstrate an in vivo function for this cytokine in airway neutrophilia. 相似文献
12.
The aim of this study was to characterize the mediators released by mast cells responsible for IL-8-induced neutrophil migration. It was observed that IL-8 induces a dose-dependent neutrophil migration into peritoneal cavity of rats, but not into air-pouch cavity in which resident mast cells are not present. The transference of peritoneal mast cells to the air-pouch renders this cavity responsive to IL-8. The neutrophil migration induced by IL-8 into the peritoneal cavity was not observed when the peritoneal-resident mast cells were depleted by compound 48/80 or distilled water treatment. Confirming the importance of mast cells, IL-8-stimulated mast cells supernatant induced significant neutrophil migration when injected into peritoneal and air-pouch cavities. The IL-8-induced neutrophil migration was observed not to be dependent on LTB(4), prostaglandins or TNF-alpha, since MK886, indomethacin or thalidomide were unable to block the IL-8-induced neutrophil accumulation 'in vivo' or the release of neutrophil chemotactic factor "in vitro" by IL-8-stimulated mast cells. However, dexamethasone, an inhibitor of the synthesis of pro-inflammatory cytokines, blocked the neutrophil migration induced by IL-8 "in vivo" and also inhibited the release of the neutrophil chemotactic factor by IL-8-stimulated mast cells. Moreover, the incubation of IL-8-stimulated mast cells supernatant with antibody against cytokine-induced neutrophil chemoattractant 1 (CINC-1), but not against TNF-alpha or IL-1beta, inhibited its neutrophil chemotactic activity. Furthermore, we found a significant amount of CINC-1 in this supernatant. In conclusion, we demonstrated that the neutrophil migration induced by IL-8 is dependent on CINC-1 release from mast cells. 相似文献
13.
Wu Q Martin RJ Rino JG Breed R Torres RM Chu HW 《Microbes and infection / Institut Pasteur》2007,9(1):78-86
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection. 相似文献
14.
15.
The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras 总被引:17,自引:0,他引:17
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras. 相似文献
16.
17.
18.
Kumar S Hanning CR Brigham-Burke MR Rieman DJ Lehr R Khandekar S Kirkpatrick RB Scott GF Lee JC Lynch FJ Gao W Gambotto A Lotze MT 《Cytokine》2002,18(2):61-71
We have recently reported the identification of four novel members of the interleukin-1 (IL-1) family which we designated as IL-1 homologue 1-4 (IL-1H1-4). These proteins exhibit significant sequence homology to other members of the IL-1 family. Of these homologues, only IL-1H4 (renamed IL-1F7b) was predicted to contain a propeptide domain and a caspase cleavage site. We now report that caspase-1 cleaves IL-1F7b at the predicted site to generate mature IL-1F7b. Caspase-4 was also able to process IL-1F7b, albeit inefficiently. Other caspases and Granzyme-B did not cleave IL-1F7b. Furthermore, adenovirus-mediated expression of IL-1F7b in HEK 293 cells led to in situ processing and secretion of mature IL-1F7b. In a screen to identify a potential receptor, both pro and mature IL-1F7b bound to the soluble IL-18 receptor alpha-Fc (IL-18Ralpha-Fc) but not to the soluble IL-1R-Fc or ST2R-Fc fusion proteins. Mature IL-1F7b bound to the IL-18Ralpha-Fc protein with higher affinity than the pro form, although the affinities for both proteins were significantly lower than that observed for IL-18. Consistent with this observation, only IL-18 and not IL-1F7b induced IFN-gamma production by KG1a cells. We also report that pro and mature IL-1F7b form homodimers with association constants of 4 microM and 5 nM, respectively, suggesting biological relevance to IL-1F7b processing. Finally, we have localized the expression of IL-1F7b protein in discrete cell populations including plasma cells and tumor cells. These data suggest that IL-1F7b may be involved in immune response, inflammatory diseases and/or cancer. 相似文献
19.
20.
Madureira P Andrade EB Gama B Oliveira L Moreira S Ribeiro A Correia-Neves M Trieu-Cuot P Vilanova M Ferreira P 《PLoS pathogens》2011,7(11):e1002363
Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')(2) fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10(-/-)) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen. 相似文献