首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Systemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource. CROssBAR is a comprehensive system that integrates large-scale biological/biomedical data from various resources and stores them in a NoSQL database. CROssBAR is enriched with the deep-learning-based prediction of relationships between numerous data entries, which is followed by the rigorous analysis of the enriched data to obtain biologically meaningful modules. These complex sets of entities and relationships are displayed to users via easy-to-interpret, interactive knowledge graphs within an open-access service. CROssBAR knowledge graphs incorporate relevant genes-proteins, molecular interactions, pathways, phenotypes, diseases, as well as known/predicted drugs and bioactive compounds, and they are constructed on-the-fly based on simple non-programmatic user queries. These intensely processed heterogeneous networks are expected to aid systems-level research, especially to infer biological mechanisms in relation to genes, proteins, their ligands, and diseases.  相似文献   

3.
Mitochondrial data have traditionally been used in reconstructing a variety of species phylogenies. The low rates of recombination and thorough characterization of mitochondrial data across vertebrate species make it a particularly attractive phylogenetic marker. The relatively low number of fully sequenced mammal genomes and the lack of extensive sampling within Superorders have posed a serious problem for reaching agreement on the placement mammal species. The use of mitochondrial data sequences from large numbers of mammals could serve to circumvent the taxon-sampling deficit. Here we assess the suitability of mitochondrial data as a phylogenetic marker in mammal phylogenetics. MtDNA datasets of mammal origin have been filtered as follows: (i) we have sampled sparsely across the phylogenetic tree, (ii) we have constrained our sampling to genes with high taxon coverage, (iii) we have categorised rates across sites in a phylogeny independent manner and have removed fast evolving sites, and (iv), we have sampled from very shallow divergence times to reduce phylogenetic conflict. However, topologies obtained using these filters are not consistent with previous studies and are discordant across different genes. Individual mitochondrial genes, and indeed all mitochondrial genes analysed as a supermatrix, resulted in poor resolution of the species phylogeny. Overall, our study highlights the limitations of mitochondrial data, not only for resolving deep divergences and but also for shallow divergences in the mammal phylogeny.  相似文献   

4.
5.
Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 γ-proteobacterial species. We describe the pattern of fast or slow evolution across species as the “selective signature” of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell.  相似文献   

6.
One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM—a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs) to simultaneously capture the (potentially reticulate) evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus) genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes). Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.  相似文献   

7.
8.
9.
10.
Selection for new favorable variants can lead to selective sweeps. However, such sweeps might be rare in the evolution of different species for which polygenic adaptation or selection on standing variation might be more common. Still, strong selective sweeps have been described in domestic species such as chicken lines or dog breeds. The goal of our study was to use a panel of individuals from 12 different cattle breeds genotyped at high density (800K SNPs) to perform a whole‐genome scan for selective sweeps defined as unexpectedly long stretches of reduced heterozygosity. To that end, we developed a hidden Markov model in which one of the hidden states corresponds to regions of reduced heterozygosity. Some unexpectedly long regions were identified. Among those, six contained genes known to affect traits with simple genetic architecture such as coat color or horn development. However, there was little evidence for sweeps associated with genes underlying production traits.  相似文献   

11.
12.
MOTIVATION: The expression of genes during the cell division process has now been studied in many different species. An important goal of these studies is to identify the set of cycling genes. To date, this was done independently for each of the species studied. Due to noise and other data analysis problems, accurately deriving a set of cycling genes from expression data is a hard problem. This is especially true for some of the multicellular organisms, including humans. RESULTS: Here we present the first algorithm that combines microarray expression data from multiple species for identifying cycling genes. Our algorithm represents genes from multiple species as nodes in a graph. Edges between genes represent sequence similarity. Starting with the measured expression values for each species we use Belief Propagation to determine a posterior score for genes. This posterior is used to determine a new set of cycling genes for each species. We applied our algorithm to improve the identification of the set of cell cycle genes in budding yeast and humans. As we show, by incorporating sequence similarity information we were able to obtain a more accurate set of genes compared to methods that rely on expression data alone. Our method was especially successful for the human dataset indicating that it can use a high quality dataset from one species to overcome noise problems in another. AVAILABILITY: C implementation is available from the supporting website: http://www.cs.cmu.edu/~lyongu/pub/cellcycle/.  相似文献   

13.
14.
MOTIVATION: Determining orthology relations among genes across multiple genomes is an important problem in the post-genomic era. Identifying orthologous genes can not only help predict functional annotations for newly sequenced or poorly characterized genomes, but can also help predict new protein-protein interactions. Unfortunately, determining orthology relation through computational methods is not straightforward due to the presence of paralogs. Traditional approaches have relied on pairwise sequence comparisons to construct graphs, which were then partitioned into putative clusters of orthologous groups. These methods do not attempt to preserve the non-transitivity and hierarchic nature of the orthology relation. RESULTS: We propose a new method, COCO-CL, for hierarchical clustering of homology relations and identification of orthologous groups of genes. Unlike previous approaches, which are based on pairwise sequence comparisons, our method explores the correlation of evolutionary histories of individual genes in a more global context. COCO-CL can be used as a semi-independent method to delineate the orthology/paralogy relation for a refined set of homologous proteins obtained using a less-conservative clustering approach, or as a refiner that removes putative out-paralogs from clusters computed using a more inclusive approach. We analyze our clustering results manually, with support from literature and functional annotations. Since our orthology determination procedure does not employ a species tree to infer duplication events, it can be used in situations when the species tree is unknown or uncertain. CONTACT: jothi@mail.nih.gov, przytyck@mail.nih.gov SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.  相似文献   

15.
16.
The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest.  相似文献   

17.
Natural variation in innate immunity of a pioneer species   总被引:2,自引:0,他引:2  
By 2010, we will have detailed knowledge about the genome of Arabidopsis thaliana from a Linnean-like effort by an international research community to identify nearly all of the genes in the species and to classify the products that these genes encode according to a primary function in a generic plant cell. To know the wild species, however, we will require knowledge of which genes provide the raw material for phenotypic variation and natural selection, and consequently affect the adaptability of individual plants and local populations across their geographic range, and ultimately survival of the species. Natural variation in innate immunity will be at the forefront of this exciting research frontier as a model for the molecular ecology of plant-microbe interactions.  相似文献   

18.
Microarrays measure the expression of large numbers of genes simultaneously and can be used to delve into interaction networks involving many genes at a time. However, it is often difficult to decide to what extent knowledge about the expression of genes gleaned in one model organism can be transferred to other species. This can be examined either by measuring the expression of genes of interest under comparable experimental conditions in other species, or by gathering the necessary data from comparable microarray experiments. However, it is essential to know which genes to compare between the organisms. To facilitate comparison of expression data across different species, we have implemented a Web-based software tool that provides information about sequence orthologs across a range of Affymetrix microarray chips. AffyTrees provides a quick and easy way of assigning which probe sets on different Affymetrix chips measure the expression of orthologous genes. Even in cases where gene or genome duplications have complicated the assignment, groups of comparable probe sets can be identified. The phylogenetic trees provide a resource that can be used to improve sequence annotation and detect biases in the sequence complement of Affymetrix chips. Being able to identify sequence orthologs and recognize biases in the sequence complement of chips is necessary for reliable cross-species microarray comparison. As the amount of work required to generate a single phylogeny in a nonautomated manner is considerable, AffyTrees can greatly reduce the workload for scientists interested in large-scale cross-species comparisons.  相似文献   

19.
20.

Background  

The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号