首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with some 3,4-dihydroxypyrrolidine-2,5-dione and 3,5-dihydroxybenzoic acid derivatives, were investigated by using the esterase assay, with 4-nitrophenyl acetate (4-NPA) as substrate. Compounds 1013 showed KI values in the range of 112.7–441.5?μM for hCA I and of 3.5–10.76?μM against hCA II, respectively. These hydroxyl group containing compounds generally were competitive inhibitors. Some hydroxyl group containing compounds investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

2.
A new type of carbonic anhydrase inhibitors was identified via differential scanning fluorimetry (DSF) screening. The compounds displayed interesting inhibition profile against human carbonic anhydrase isoforms I, II, IX and XII with an obvious selectivity displayed by one compound toward carbonic anhydrase (CA) IX, an established anti-cancer target. A hypothetical mechanism of inhibitory action by the Strecker-type α-aminonitriles has been proposed.  相似文献   

3.
Inhibitors of carbonic anhydrase were tested for their effects on Photosystem II (PS II) activity in chloroplasts. We find that formate inhibition of PS II turnover rates increases as the pH of the reaction medium is lowered. Bicarbonate ions can inhibit PS II turnover rates. The relative potency of the anionic inhibitors N3?, I?, OAc?, and Cl? is the same for both carbonic anhydrase and PS II. The inhibitory effect of acetazolamide on PS II increases as light intensity decreases, indicating a lowering of quantum yields in the presence of the inhibitor. Imidazole inhibition of PS II increases with pH in a manner suggesting that the unprotonated form of the compound is inhibitory. Formate, bicarbonate, acetazolamide, and imidazole all inhibit DCMU-insensitive, silicomolybdate-supported oxygen evolution, indicating that the site(s) of action of the inhibitors is at, or before, the primary stable PS II electron acceptor Q. This inhibitory effect of low levels of HCO3? along with the known enhancement by HCO3? of quinone-mediated electron flow suggests an antagonistic control effect on PS II photochemistry. We conclude that the responses of PS II to anions (formate, bicarbonate), acetazolamide, and imidazole are analogous to the responses shown by carbonic anhydrase. These findings suggest that the enzyme carbonic anhydrase may provide a model system to gain insight into the “bicarbonate-effect” associated with PS II in chloroplasts.  相似文献   

4.
Several aromatic/heterocyclic sulfonamide scaffolds have been used to synthesize compounds incorporating NO-donating moieties of the nitrate ester type, which have been investigated for the inhibition of five physiologically relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms: hCA I (offtarget), II, IV and XII (antiglaucoma targets) and IX (antitumor target). Some of the new compounds showed effective in vitro inhibition of the target isoforms involved in glaucoma, and the X-ray crystal structure of one of them revealed factors associated with the marked inhibitory activity. In an animal model of ocular hypertension, one of the new compounds was twice more effective than dorzolamide in reducing elevated intraocular pressure characteristic of this disease, anticipating their potential for the treatment of glaucoma.  相似文献   

5.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with K(I)'s in the range of 0.228 to 118 μM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

6.
A series of N-(p-sulfamoylphenyl)-alpha-D-glycopyranosylamines was prepared by reaction of sulfanilamide with different monosaccharides in the presence of ammonium chloride. The new compounds were investigated for inhibition of the metallo-enzyme carbonic anhydrase (CA, EC 4.2.1.1), involved in aqueous humor secretion within the mammalian eye. Isozymes CA I and CA II were strongly inhibited by some of these compounds, which showed inhibition constants in the range of 510-1200 nM against CA I and 10-25 nM against CA II, similarly to clinically used sulfonamides, such as acetazolamide, methazolamide, dichlorophenamide, dorzolamide and brinzolamide. The presence of sugar moieties in these molecules induced an enhanced water solubility as compared to other sulfonamides. In hypertensive rabbits (a widely used animal model of glaucoma), two of the new compounds showed strong and long-lasting intraocular pressure (IOP) lowering, being more effective than dorzolamide and brinzolamide, the two clinically used, topically acting antiglaucoma sulfonamides with CA inhibitory properties.  相似文献   

7.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by ex vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides, only the membrane-bound enzyme (CA IV) was inhibited, whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, benzolamide, etc.) were used, unselective inhibition of all CA isozymes (I, II and IV) occurred.  相似文献   

8.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

9.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisub-stituted-pyridinium-ethylcarboxy moieties (obtained from 2, 4, 6–trisubstituted-pyrylium salts and β-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by CJ vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides. only the membrane-bound enzyme (CA IV) was inhibited. whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, bcn-zolamíde. etc.) were used. unselective inhibition of all CA isozymes (I. II and IV) occurred.  相似文献   

10.
Thirty novel sulfonamide derivatives incorporating dipeptide were synthesized by facile acylation through benzotriazole mediated reactions and their structures were identified by 1H NMR, 13C NMR, MS and FT-IR spectroscopic techniques and elemental analysis. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV and hCA XII. Most of the synthesized compounds showed excellent in vitro carbonic anhydrase inhibitory properties comparable to those of the clinically used drug acetazolamide (AAZ). The new unprotected dipeptide-sulfonamide conjugates showed very effective inhibitory activity, in the low nanomolar range against II and XII, being less effective as hCA I and IV inhibitors. Four of the thirty compounds also showed strong inhibitory activity against hCA XII compared to AAZ.  相似文献   

11.
Coumarin and heterocyclic compounds incorporating urea have clinical applications as antiepileptics, diuretics, and antiglaucoma agents due to their carbonic anhydrase inhibitory properties. We investigated inhibition of carbonic anhydrase I and II with a series of coumarylthiazole derivatives containing urea/thiourea groups. All the investigated compounds exhibited inhibitory activity on both hCA I and hCA II, with 1-(3-chlorophenyl)-3-(4-(2-oxo-2H-chromen-3-yl)thiazol-2-yl)urea being the strongest inhibitor. Structure–activity relationship study showed that most of urea derivatives were more inhibiting for hCA I and hCA II than thiourea derivatives. The electron-withdrawing groups at the phenyl ring increased the inhibitory activity compared to electron-donating groups.  相似文献   

12.
A series of human carbonic anhydrase (hCA) IX inhibitors conjugated to various near-infrared fluorescent dyes was synthesized with the aim of imaging hypoxia-induced hCA IX expression in tumor cells in vitro, ex vivo and in vivo. The resulting compounds were profiled for inhibition of transmembrane hCA IX showing a range of potencies from 7.5 to 116 nM and up to 50-fold selectivity over the cytosolic form hCA II. Some of the compounds also showed inhibition selectivity for other transmembrane forms hCA XII and XIV as well. Compounds incubated in vitro with HeLa cells cultured under normoxic and hypoxic conditions detected upregulation of hCA IX under hypoxia by fluorescence microscopy. A pilot in vivo study in HT-29 tumor bearing mice showed significant accumulation of a fluorescent acetazolamide derivative in tumor tissue with little accumulation in other tissues. Approximately 10% of injected dose was non-invasively quantified in tumors by fluorescence molecular tomography (FMT), demonstrating the promise of these new compounds for quantitative imaging of hCA IX upregulation in live animals.  相似文献   

13.
Novel dioxoacridine sulfonamide compounds were synthesized from reaction of cyclic 1,3-diketones, sulfanilamide (4-amino benzene sulfonamide) and aromatic aldehydes. The structures of these compounds were confirmed by using spectral analysis (IR, H-NMR, (13)C-NMR, and mass). Human carbonic anhydrase isoenzymes (hCA I and hCA II) were purified from erythrocyte cells by affinity chromatography. The inhibitory effects of sulfanilamide, acetazolamide (AAZ), and newly synthesized sulfonamides on hydratase and esterase activities of these isoenzymes have been studied in vitro. The IC(50) values of compounds for esterase activity are 0.71-0.11 μM for hCA I and 0.45-0.12 μM for hCA II, respectively. The K(i) values of these inhibitors were determined as 0,38-0,008 μM for hCA I and 0,19-0,001 μM for hCA II, respectively.  相似文献   

14.
The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with a series of phenol derivatives was investigated by using the esterase assay, with 4-nitrophenyl acetate as substrate. 2,6-Dimethylphenol, 2,6-diisopropylphenol (propofol), 2,6-di-t-butylphenol, butylated hydroxytoluene, butylated hydroxyanisole, vanillin, guaiacol, di(2,6-dimethylphenol), di(2,6-diisopropylphenol), di(2,6-di-t-butylphenol), and acetazolamide showed KI values in the range of 37.5–274.5 μM for hCA I and of 0.29–113.5 μM against hCA II, respectively. All these phenols were non-competitive inhibitors with 4-nitrophenylacetate as substrate. Some antioxidant phenol derivatives investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

15.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

16.
A small library of phosphorylated sulfamates (N-(O-alkylsulfamoyl)-phosphoramidic acids) incorporating long aliphatic chains (C8-C16) has been synthesized and investigated for their interaction with two physiologically relevant carbonic anhydrase (CA) isozymes. These compounds behaved as very potent inhibitors of both isozymes, with inhibition constants in the range of 8.2-16.1nM against isozyme hCA I, and 5.3-11.9nM against isozyme hCA II. Activity was optimal for the n-octyl derivative (similarly with that of the corresponding unsubstituted sulfamates) and gradually decreased for the longer chain derivatives. Some of these compounds are much more effective CA inhibitors as compared to the clinically used derivatives acetazolamide, sulfanilamide or topiramate, which are used as standards for the enzymatic determinations. The phosphorylated sulfamate moiety represents a novel zinc-binding group for the design of effective CA inhibitors.  相似文献   

17.
Inhibitory effects of three new derivatives of 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide on bovine carbonic anhydrase have been investigated. The new compounds are 2-(3-chloropropionylamino)-1,3,4-thiadiazole-5-sulfonamide, 2-(2,2-dichloroacetylamino)-1,3,4-thiadiazole-5-sulfonamide, and 2-(3-phenylpropionylamino)-1,3,4-thiadiazole-5-sulfonamide. The new compounds inhibit the esterase activity of carbonic anhydrase noncompetitively and have inhibition constants and I 50 values very similar to those for 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, the latter being clinically used in the treatment of glaucoma.  相似文献   

18.
Carbonic anhydrase III, a cytosolic enzyme found predominantly in skeletal muscle, has a turnover rate for CO2 hydration 500-fold lower and a KI for inhibition by acetazolamide 700-fold higher (at pH 7.2) than those of red cell carbonic anhydrase II. Mutants of human carbonic anhydrase III were made by replacing three residues near the active site with amino acids known to be at the corresponding positions in isozyme II (Lys-64----His, Arg-67----Asn, and Phe-198----Leu). Catalytic properties were measured by stopped-flow spectrophotometry and 18O exchange between CO2 and water using mass spectrometry. The triple mutant of isozyme III had a turnover rate for CO2 hydration 500-fold higher than wild-type carbonic anhydrase III. The binding constants, KI, for sulfonamide inhibitors of the mutants containing Leu-198 were comparable to those of carbonic anhydrase II. The mutations at residues 64, 67, and 198 were catalytically independent; the lowered energy barrier for the triple mutant was the sum of the energy changes for each of the single mutants. Moreover, the triple mutant of isozyme III catalyzed the hydrolysis of 4-nitrophenyl acetate with a specific activity and pH dependence similar to those of isozyme II. Phe-198 is thus a major contributor to the low CO2 hydration activity, the weak binding of acetazolamide, and the low pKa of the zinc-bound water in carbonic anhydrase III. Intramolecular proton transfer involving His-64 was necessary for maximal turnover.  相似文献   

19.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

20.
This paper examines the functional mechanism of thioxolone, a compound recently identified as a weak inhibitor of human carbonic anhydrase II by Iyer et al. (2006) J. Biomol. Screening 11, 782-791 . Thioxolone lacks sulfonamide, sulfamate, or hydroxamate functional groups that are typically found in therapeutic carbonic anhydrase (CA) inhibitors, such as acetazolamide. Analytical chemistry and biochemical methods were used to investigate the fate of thioxolone upon binding to CA II, including Michaelis-Menten kinetics of 4-nitrophenyl acetate esterase cleavage, liquid chromatography-mass spectrometry (LC-MS), oxygen-18 isotope exchange studies, and X-ray crystallography. Thioxolone is proposed to be a prodrug inhibitor that is cleaved via a CA II zinc-hydroxide mechanism known to catalyze the hydrolysis of esters. When thioxolone binds in the active site of CA II, it is cleaved and forms 4-mercaptobenzene-1,3-diol via the intermediate S-(2,4-thiophenyl)hydrogen thiocarbonate. The esterase cleavage product binds to the zinc active site via the thiol group and is therefore the active CA inhibitor, while the intermediate is located at the rim of the active-site cavity. The time-dependence of this inhibition reaction was investigated in detail. Because this type of prodrug inhibitor mechanism depends on cleavage of ester bonds, this class of inhibitors may have advantages over sulfonamides in determining isozyme specificity. A preliminary structure-activity relationship study with a series of structural analogues of thioxolone yielded similar estimates of inhibition constants for most compounds, although two compounds with bromine groups at the C1 carbon of thioxolone were not inhibitory, suggesting a possible steric effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号